
“Mathematics is like checkers

in being suitable for the young,

not too difficult, amusing,

and without peril to the state.”

—Plato
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Elkies, 1988,

“On A4 + B4 + C4 = D4”:

26824404 + 153656394 + 187967604

= 206156734

: : : “seems beyond the range

of reasonable exhaustive

computer search.”



All solutions ≤ 21000000

with positive coordinates,

mod scaling, permutations:

958004+2175194+4145604=4224814

6738654+13904004+27676244=28130014

17055754+55078804+83322084=87074814

58700004+82825434+112890404=121974574

44790314+125522004+141737204=160030174

36428404+70286004+162810094=164305134

26824404+153656394+187967604=206156734

(422481 Frye; 2813001 MacLeod;

20615673 Elkies; others new)



Standard method

To find all solutions ≤ H:

Sort
˘

(a4 + b4; a; b) : a; b ≤ H
¯

into increasing order

in the first component.

Also
˘

(d4 − c4; c; d) : c; d ≤ H
¯

.

Merge the sorted lists,

looking for collisions.



MSD radix sort takes linear time

in realistic machine model.

Time: H2+o(1).

Tolerable for large H.

Space: H2+o(1).

Impossible for large H.



Standard improvements

1. Reduce #{(a; b)}, #{(c; d)}
by carefully choosing

representatives for {(a; b; c; d)}
mod scaling et al.

2. Chop Z into

intervals in R or Qp.

Enumerate a4 + b4 and d4 − c4

in each interval separately.

3. Prove theorems to exclude

solutions in some intervals.



Assume aZ + bZ + cZ + dZ = Z.

Permute a; b; c so that

a ∈ 2Z and b ∈ 10Z.

Then a ∈ 8Z, b ∈ 40Z,

d − 1 ∈ 8Z, d =∈ 5Z,

and c ≡ ±d (mod 1024).

#{(c; d)} ≈ 10−4H2.

Can reduce further with

more p-adic restrictions.

(Morgan Ward, 1948)



Searching without sorting

Factor each d4 − c4 into primes,

write as sum of two squares

in all possible ways;

check for fourth powers.

No solutions for H = 104.

(Ward)

Time H2+o(1) with

modern factoring methods,

but still rather slow.



Alternative: For each (c; d),

enumerate possible b’s,

see if d4 − c4 − b4 is fourth power.

No solutions for H = 2:2 · 105.

(Lander-Parkin-Selfridge, 1967)

Solutions for H = 2 · 106.

≈ 2 · 10−6H3 fourth-power tests.

(Frye, 1988)



Sorting without storing

For fixed b, easy to generate

a4 + b4 in increasing order,

using very little space.

Run one generator for each b,

merge results.

(Lander-Parkin, 1967)



2=14+14 32=24+24 162=34+34

17=24+14 32=24+24 162=34+34

82=34+14 32=24+24 162=34+34

82=34+14 97=34+24 162=34+34

257=44+14 97=34+24 162=34+34

257=44+14 272=44+24 162=34+34

257=44+14 272=44+24 337=44+34

626=54+14 272=44+24 337=44+34

626=54+14 641=54+24 337=44+34

626=54+14 641=54+24 706=54+34

: : :



For each of the H2 outputs,

search for smallest of H results.

Total time: H3+o(1).

Space: H generators.



Heaps

A heap is a sequence

x1; x2; : : : ; xn such that

x1 ≤ x2, x1 ≤ x3,

x2 ≤ x4, x2 ≤ x5,

x3 ≤ x6, x3 ≤ x7,

x4 ≤ x8, x4 ≤ x9,

etc.

e.g. 1; 4; 1; 5; 9; 2; 6; 5



Smallest element of a heap

x1; x2; : : : ; xn is x1.

For any y , easy to permute

y; x2; x3; : : : ; xn into a new heap:

1. j ← 1.

2. k ← 2j .

3. Stop if k > n.

4. k ← k + 1 if k < n, xk+1 < xk .

5. Stop if y ≤ xk .

6. Swap y (in jth spot) with xk .

7. j ← k.

8. Go back to step 2.



Use heap in Lander-Parkin method.

Space: H generators.

Time: H2+o(1).

Other data structures allowing

fast find-and-replace-smallest:

leftist trees, loser selection trees,

balanced trees, B-trees, etc.

Heaps are small and very fast.



History

Heaps: J. W. J. Williams, 1964.

Improvements: Floyd, 1964.

Using heaps to enumerate sums

in sorted order: W. S. Brown.

See exercise in Knuth on

multiplying sparse power series.

Speeding up Lander-Parkin:

Randy Ekl (balanced trees);

independently me (heaps);

independently David W. Wilson

(heaps).



Limiting precision

Search for solutions to

(a4 mod m) + (b4 mod m)− ‹m
= (d4 mod m)− (c4 mod m)

with m = 260 − 93

and ‹ ∈ {0; 1; 2}.

Use sorted table of

fourth powers mod m.



Other computations

Enumerating rational points

on various cubic surfaces.

Distribution seems consistent

with best available conjecture.



91 can be written in 2 ways

as sum of two coprime cubes:

91 = (−5)3 + 63 = 33 + 43.

3367 in 3 ways.

16776487 in 4 ways. (Rathbun)

506433677359393 in 5 ways.

137904678696613339 in 5 ways.



http://pobox.com/~djb

/sortedsums.html

http://pobox.com/~djb

/papers/sortedsums.dvi


