
Cache-timing attacks

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.



Cache-timing attacks

D. J. Bernstein

Thanks to:

University of Illinois at Chicago

NSF CCR–9983950

Alfred P. Sloan Foundation

http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Outline of this talk:

1. How to advertise

an AES candidate

2. How to leak keys through

timings: basic techniques

3. How to break AES remotely

by forcing cache misses

4. How to skew a benchmark

5. How to leak keys through

timings: advanced techniques

6. How to break AES remotely

without cache misses

7. How to misdesign

a cryptographic architecture



http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Outline of this talk:

1. How to advertise

an AES candidate

2. How to leak keys through

timings: basic techniques

3. How to break AES remotely

by forcing cache misses

4. How to skew a benchmark

5. How to leak keys through

timings: advanced techniques

6. How to break AES remotely

without cache misses

7. How to misdesign

a cryptographic architecture



http://cr.yp.to/papers.html

#cachetiming, 2005:

“This paper reports successful

extraction of a complete AES key

from a network server

on another computer.

The targeted server used its key

solely to encrypt data using the

OpenSSL AES implementation

on a Pentium III.”

All code included in paper.

Easily reproducible.

Outline of this talk:

1. How to advertise

an AES candidate

2. How to leak keys through

timings: basic techniques

3. How to break AES remotely

by forcing cache misses

4. How to skew a benchmark

5. How to leak keys through

timings: advanced techniques

6. How to break AES remotely

without cache misses

7. How to misdesign

a cryptographic architecture

1. Advertising an AES candidate

1997: US NIST announces block-

cipher competition. Goal: AES,

replacing DES as US government-

approved block cipher.

1999: NIST announces MARS,

RC6, Rijndael, Serpent, Twofish

as AES finalists.

2001: NIST publishes “Report on

the development of the Advanced

Encryption Standard (AES),”

explaining selection of Rijndael as

AES.



Outline of this talk:

1. How to advertise

an AES candidate

2. How to leak keys through

timings: basic techniques

3. How to break AES remotely

by forcing cache misses

4. How to skew a benchmark

5. How to leak keys through

timings: advanced techniques

6. How to break AES remotely

without cache misses

7. How to misdesign

a cryptographic architecture

1. Advertising an AES candidate

1997: US NIST announces block-

cipher competition. Goal: AES,

replacing DES as US government-

approved block cipher.

1999: NIST announces MARS,

RC6, Rijndael, Serpent, Twofish

as AES finalists.

2001: NIST publishes “Report on

the development of the Advanced

Encryption Standard (AES),”

explaining selection of Rijndael as

AES.



Outline of this talk:

1. How to advertise

an AES candidate

2. How to leak keys through

timings: basic techniques

3. How to break AES remotely

by forcing cache misses

4. How to skew a benchmark

5. How to leak keys through

timings: advanced techniques

6. How to break AES remotely

without cache misses

7. How to misdesign

a cryptographic architecture

1. Advertising an AES candidate

1997: US NIST announces block-

cipher competition. Goal: AES,

replacing DES as US government-

approved block cipher.

1999: NIST announces MARS,

RC6, Rijndael, Serpent, Twofish

as AES finalists.

2001: NIST publishes “Report on

the development of the Advanced

Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

1996: Kocher extracts RSA key

from timings of a server.

Clear threat to block-cipher keys

too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.



1. Advertising an AES candidate

1997: US NIST announces block-

cipher competition. Goal: AES,

replacing DES as US government-

approved block cipher.

1999: NIST announces MARS,

RC6, Rijndael, Serpent, Twofish

as AES finalists.

2001: NIST publishes “Report on

the development of the Advanced

Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

1996: Kocher extracts RSA key

from timings of a server.

Clear threat to block-cipher keys

too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.



1. Advertising an AES candidate

1997: US NIST announces block-

cipher competition. Goal: AES,

replacing DES as US government-

approved block cipher.

1999: NIST announces MARS,

RC6, Rijndael, Serpent, Twofish

as AES finalists.

2001: NIST publishes “Report on

the development of the Advanced

Encryption Standard (AES),”

explaining selection of Rijndael as

AES.

1996: Kocher extracts RSA key

from timings of a server.

Clear threat to block-cipher keys

too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : :

“Table lookup: not vulnerable to

timing attacks : : :

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend : : :



1996: Kocher extracts RSA key

from timings of a server.

Clear threat to block-cipher keys

too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : :

“Table lookup: not vulnerable to

timing attacks : : :

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend : : :



1996: Kocher extracts RSA key

from timings of a server.

Clear threat to block-cipher keys

too. As stated in NIST’s report:

“In some environments,

timing attacks can be effected

against operations that execute

in different amounts of time,

depending on their arguments.

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : :

“Table lookup: not vulnerable to

timing attacks : : :

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend : : :

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts/rotations. These operations

are the easiest to defend against

attacks. : : :

“Finalist profiles. : : : The

operations used by Rijndael are

among the easiest to defend

against power and timing

attacks. : : :Rijndael appears to

gain a major speed advantage

over its competitors when such

protections are considered. : : :



“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : :

“Table lookup: not vulnerable to

timing attacks : : :

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend : : :

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts/rotations. These operations

are the easiest to defend against

attacks. : : :

“Finalist profiles. : : : The

operations used by Rijndael are

among the easiest to defend

against power and timing

attacks. : : :Rijndael appears to

gain a major speed advantage

over its competitors when such

protections are considered. : : :



“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : :

“Table lookup: not vulnerable to

timing attacks : : :

“Multiplication/division/squaring

or variable shift/rotation:

most difficult to defend : : :

“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts/rotations. These operations

are the easiest to defend against

attacks. : : :

“Finalist profiles. : : : The

operations used by Rijndael are

among the easiest to defend

against power and timing

attacks. : : :Rijndael appears to

gain a major speed advantage

over its competitors when such

protections are considered. : : :

“NIST judged Rijndael to be the

best overall algorithm for the

AES. Rijndael appears to be a

consistently good performer : : :

Its key setup time is excellent,

and its key agility is good. : : :

Rijndael’s operations are among

the easiest to defend against

power and timing attacks. : : :

Finally, Rijndael’s internal

round structure appears to have

good potential to benefit from

instruction-level parallelism.”

(Emphasis added.)



“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts/rotations. These operations

are the easiest to defend against

attacks. : : :

“Finalist profiles. : : : The

operations used by Rijndael are

among the easiest to defend

against power and timing

attacks. : : :Rijndael appears to

gain a major speed advantage

over its competitors when such

protections are considered. : : :

“NIST judged Rijndael to be the

best overall algorithm for the

AES. Rijndael appears to be a

consistently good performer : : :

Its key setup time is excellent,

and its key agility is good. : : :

Rijndael’s operations are among

the easiest to defend against

power and timing attacks. : : :

Finally, Rijndael’s internal

round structure appears to have

good potential to benefit from

instruction-level parallelism.”

(Emphasis added.)



“Rijndael and Serpent use

only Boolean operations,

table lookups, and fixed

shifts/rotations. These operations

are the easiest to defend against

attacks. : : :

“Finalist profiles. : : : The

operations used by Rijndael are

among the easiest to defend

against power and timing

attacks. : : :Rijndael appears to

gain a major speed advantage

over its competitors when such

protections are considered. : : :

“NIST judged Rijndael to be the

best overall algorithm for the

AES. Rijndael appears to be a

consistently good performer : : :

Its key setup time is excellent,

and its key agility is good. : : :

Rijndael’s operations are among

the easiest to defend against

power and timing attacks. : : :

Finally, Rijndael’s internal

round structure appears to have

good potential to benefit from

instruction-level parallelism.”

(Emphasis added.)

1999: AES designers (Daemen,

Rijmen) publish “Resistance

against implementation attacks:

a comparative study of the AES

proposals”:

“Table lookups: This instruction

is not susceptible to a timing

attack. : : : Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts,

and that are therefore relatively

easy to secure. The algorithms

of this group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”



“NIST judged Rijndael to be the

best overall algorithm for the

AES. Rijndael appears to be a

consistently good performer : : :

Its key setup time is excellent,

and its key agility is good. : : :

Rijndael’s operations are among

the easiest to defend against

power and timing attacks. : : :

Finally, Rijndael’s internal

round structure appears to have

good potential to benefit from

instruction-level parallelism.”

(Emphasis added.)

1999: AES designers (Daemen,

Rijmen) publish “Resistance

against implementation attacks:

a comparative study of the AES

proposals”:

“Table lookups: This instruction

is not susceptible to a timing

attack. : : : Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts,

and that are therefore relatively

easy to secure. The algorithms

of this group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”



“NIST judged Rijndael to be the

best overall algorithm for the

AES. Rijndael appears to be a

consistently good performer : : :

Its key setup time is excellent,

and its key agility is good. : : :

Rijndael’s operations are among

the easiest to defend against

power and timing attacks. : : :

Finally, Rijndael’s internal

round structure appears to have

good potential to benefit from

instruction-level parallelism.”

(Emphasis added.)

1999: AES designers (Daemen,

Rijmen) publish “Resistance

against implementation attacks:

a comparative study of the AES

proposals”:

“Table lookups: This instruction

is not susceptible to a timing

attack. : : : Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts,

and that are therefore relatively

easy to secure. The algorithms

of this group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers write: Speed

reports “should take into account

the measures to be taken to

thwart these attacks.”

2005, after AES is shown to be

vulnerable, amazing change of

position: Timing attacks are

“irrelevant for cryptographic

design.” Schneier, 2005:

“The problem is that side-channel

attacks are practical against

pretty much anything, so it didn’t

really enter into consideration.”



1999: AES designers (Daemen,

Rijmen) publish “Resistance

against implementation attacks:

a comparative study of the AES

proposals”:

“Table lookups: This instruction

is not susceptible to a timing

attack. : : : Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts,

and that are therefore relatively

easy to secure. The algorithms

of this group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers write: Speed

reports “should take into account

the measures to be taken to

thwart these attacks.”

2005, after AES is shown to be

vulnerable, amazing change of

position: Timing attacks are

“irrelevant for cryptographic

design.” Schneier, 2005:

“The problem is that side-channel

attacks are practical against

pretty much anything, so it didn’t

really enter into consideration.”



1999: AES designers (Daemen,

Rijmen) publish “Resistance

against implementation attacks:

a comparative study of the AES

proposals”:

“Table lookups: This instruction

is not susceptible to a timing

attack. : : : Favorable: Algorithms

that use only logical operations,

table-lookups and fixed shifts,

and that are therefore relatively

easy to secure. The algorithms

of this group are Crypton, DEAL,

Magenta, Rijndael and Serpent.”

AES designers write: Speed

reports “should take into account

the measures to be taken to

thwart these attacks.”

2005, after AES is shown to be

vulnerable, amazing change of

position: Timing attacks are

“irrelevant for cryptographic

design.” Schneier, 2005:

“The problem is that side-channel

attacks are practical against

pretty much anything, so it didn’t

really enter into consideration.”

2. Leaking keys through timings

Most obvious timing variability:

skipping an operation is faster

than doing it.

1970s: TENEX operating system

compares user-supplied string

against secret password one

character a a time, stopping at

first difference. Attackers monitor

comparison time, deduce position

of difference. A few hundred tries

reveal secret password.



AES designers write: Speed

reports “should take into account

the measures to be taken to

thwart these attacks.”

2005, after AES is shown to be

vulnerable, amazing change of

position: Timing attacks are

“irrelevant for cryptographic

design.” Schneier, 2005:

“The problem is that side-channel

attacks are practical against

pretty much anything, so it didn’t

really enter into consideration.”

2. Leaking keys through timings

Most obvious timing variability:

skipping an operation is faster

than doing it.

1970s: TENEX operating system

compares user-supplied string

against secret password one

character a a time, stopping at

first difference. Attackers monitor

comparison time, deduce position

of difference. A few hundred tries

reveal secret password.



AES designers write: Speed

reports “should take into account

the measures to be taken to

thwart these attacks.”

2005, after AES is shown to be

vulnerable, amazing change of

position: Timing attacks are

“irrelevant for cryptographic

design.” Schneier, 2005:

“The problem is that side-channel

attacks are practical against

pretty much anything, so it didn’t

really enter into consideration.”

2. Leaking keys through timings

Most obvious timing variability:

skipping an operation is faster

than doing it.

1970s: TENEX operating system

compares user-supplied string

against secret password one

character a a time, stopping at

first difference. Attackers monitor

comparison time, deduce position

of difference. A few hundred tries

reveal secret password.

Solution: Use constant-time

password comparison.

Old:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

New:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;



2. Leaking keys through timings

Most obvious timing variability:

skipping an operation is faster

than doing it.

1970s: TENEX operating system

compares user-supplied string

against secret password one

character a a time, stopping at

first difference. Attackers monitor

comparison time, deduce position

of difference. A few hundred tries

reveal secret password.

Solution: Use constant-time

password comparison.

Old:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

New:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;



2. Leaking keys through timings

Most obvious timing variability:

skipping an operation is faster

than doing it.

1970s: TENEX operating system

compares user-supplied string

against secret password one

character a a time, stopping at

first difference. Attackers monitor

comparison time, deduce position

of difference. A few hundred tries

reveal secret password.

Solution: Use constant-time

password comparison.

Old:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

New:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;

1996: Kocher points out timing

attacks on cryptographic key bits.

Example: key-dependent branch

in modular reduction, performing

large-integer subtraction for some

inputs and not others, leaking key.

My reaction at the time: Yikes!

Eliminate variable-time operations

from cryptographic software!

Beware microSPARC-IIep

data-dependent FPU timings;

use Fermat instead of Euclid for

inversion in ECC;

avoid S-boxes in ciphers; etc.



Solution: Use constant-time

password comparison.

Old:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

New:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;

1996: Kocher points out timing

attacks on cryptographic key bits.

Example: key-dependent branch

in modular reduction, performing

large-integer subtraction for some

inputs and not others, leaking key.

My reaction at the time: Yikes!

Eliminate variable-time operations

from cryptographic software!

Beware microSPARC-IIep

data-dependent FPU timings;

use Fermat instead of Euclid for

inversion in ECC;

avoid S-boxes in ciphers; etc.



Solution: Use constant-time

password comparison.

Old:

for (i = 0;i < n;++i)

if (x[i] != y[i])

return 0;

return 1;

New:

diff = 0;

for (i = 0;i < n;++i)

diff |= x[i] ^ y[i];

return !diff;

1996: Kocher points out timing

attacks on cryptographic key bits.

Example: key-dependent branch

in modular reduction, performing

large-integer subtraction for some

inputs and not others, leaking key.

My reaction at the time: Yikes!

Eliminate variable-time operations

from cryptographic software!

Beware microSPARC-IIep

data-dependent FPU timings;

use Fermat instead of Euclid for

inversion in ECC;

avoid S-boxes in ciphers; etc.

1999: Koeune Quisquater publish

fast timing attack on a “careless

implementation” of AES that

used input-dependent branches.

AES has functions S; S0 mapping

bytes to bytes. Attack is against

S0 computed as follows:

byte Sprime(byte b) {

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

}

Timing leaks bit of c: faster if

c < 128.



1996: Kocher points out timing

attacks on cryptographic key bits.

Example: key-dependent branch

in modular reduction, performing

large-integer subtraction for some

inputs and not others, leaking key.

My reaction at the time: Yikes!

Eliminate variable-time operations

from cryptographic software!

Beware microSPARC-IIep

data-dependent FPU timings;

use Fermat instead of Euclid for

inversion in ECC;

avoid S-boxes in ciphers; etc.

1999: Koeune Quisquater publish

fast timing attack on a “careless

implementation” of AES that

used input-dependent branches.

AES has functions S; S0 mapping

bytes to bytes. Attack is against

S0 computed as follows:

byte Sprime(byte b) {

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

}

Timing leaks bit of c: faster if

c < 128.



1996: Kocher points out timing

attacks on cryptographic key bits.

Example: key-dependent branch

in modular reduction, performing

large-integer subtraction for some

inputs and not others, leaking key.

My reaction at the time: Yikes!

Eliminate variable-time operations

from cryptographic software!

Beware microSPARC-IIep

data-dependent FPU timings;

use Fermat instead of Euclid for

inversion in ECC;

avoid S-boxes in ciphers; etc.

1999: Koeune Quisquater publish

fast timing attack on a “careless

implementation” of AES that

used input-dependent branches.

AES has functions S; S0 mapping

bytes to bytes. Attack is against

S0 computed as follows:

byte Sprime(byte b) {

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

}

Timing leaks bit of c: faster if

c < 128.

Standard solution:

replace branch by arithmetic.

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;

CPUs handle this arithmetic

in constant time.

Koeune Quisquater:

“The result presented here is

not an attack against Rijndael,

but against

bad implementations of it.”



1999: Koeune Quisquater publish

fast timing attack on a “careless

implementation” of AES that

used input-dependent branches.

AES has functions S; S0 mapping

bytes to bytes. Attack is against

S0 computed as follows:

byte Sprime(byte b) {

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

}

Timing leaks bit of c: faster if

c < 128.

Standard solution:

replace branch by arithmetic.

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;

CPUs handle this arithmetic

in constant time.

Koeune Quisquater:

“The result presented here is

not an attack against Rijndael,

but against

bad implementations of it.”



1999: Koeune Quisquater publish

fast timing attack on a “careless

implementation” of AES that

used input-dependent branches.

AES has functions S; S0 mapping

bytes to bytes. Attack is against

S0 computed as follows:

byte Sprime(byte b) {

byte c = S(b);

if (c<128) return c+c;

return (c+c)^283;

}

Timing leaks bit of c: faster if

c < 128.

Standard solution:

replace branch by arithmetic.

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;

CPUs handle this arithmetic

in constant time.

Koeune Quisquater:

“The result presented here is

not an attack against Rijndael,

but against

bad implementations of it.”

Second most obvious timing

variability: L2 cache is faster

than DRAM. Similarly, L1 cache

is faster than L2 cache.

Reading from cached line

takes less time than

reading from uncached line.

Variability mentioned by 1996

Kocher, 2000 Kelsey Schneier

Wagner Hall (“We believe attacks

based on cache hit ratio in large

S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003

Ferguson Schneier.



Standard solution:

replace branch by arithmetic.

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;

CPUs handle this arithmetic

in constant time.

Koeune Quisquater:

“The result presented here is

not an attack against Rijndael,

but against

bad implementations of it.”

Second most obvious timing

variability: L2 cache is faster

than DRAM. Similarly, L1 cache

is faster than L2 cache.

Reading from cached line

takes less time than

reading from uncached line.

Variability mentioned by 1996

Kocher, 2000 Kelsey Schneier

Wagner Hall (“We believe attacks

based on cache hit ratio in large

S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003

Ferguson Schneier.



Standard solution:

replace branch by arithmetic.

X = c>>7;

X |= (X<<1);

X |= (X<<3);

return (c<<1)^X;

CPUs handle this arithmetic

in constant time.

Koeune Quisquater:

“The result presented here is

not an attack against Rijndael,

but against

bad implementations of it.”

Second most obvious timing

variability: L2 cache is faster

than DRAM. Similarly, L1 cache

is faster than L2 cache.

Reading from cached line

takes less time than

reading from uncached line.

Variability mentioned by 1996

Kocher, 2000 Kelsey Schneier

Wagner Hall (“We believe attacks

based on cache hit ratio in large

S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003

Ferguson Schneier.

2002: Page publishes fast

algorithm to find DES key

from high-bandwidth timing

information. DPA-style. Many

plaintexts, each starting with

empty cache. Algorithm input:

for each plaintext, list of S-box

lookups that missed the cache.

Avoid empty cache by preloading

some S-box entries? “To

guarantee this as an effective

countermeasure we need to warm

the cache with the entirety of all

the S-boxes.”



Second most obvious timing

variability: L2 cache is faster

than DRAM. Similarly, L1 cache

is faster than L2 cache.

Reading from cached line

takes less time than

reading from uncached line.

Variability mentioned by 1996

Kocher, 2000 Kelsey Schneier

Wagner Hall (“We believe attacks

based on cache hit ratio in large

S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003

Ferguson Schneier.

2002: Page publishes fast

algorithm to find DES key

from high-bandwidth timing

information. DPA-style. Many

plaintexts, each starting with

empty cache. Algorithm input:

for each plaintext, list of S-box

lookups that missed the cache.

Avoid empty cache by preloading

some S-box entries? “To

guarantee this as an effective

countermeasure we need to warm

the cache with the entirety of all

the S-boxes.”



Second most obvious timing

variability: L2 cache is faster

than DRAM. Similarly, L1 cache

is faster than L2 cache.

Reading from cached line

takes less time than

reading from uncached line.

Variability mentioned by 1996

Kocher, 2000 Kelsey Schneier

Wagner Hall (“We believe attacks

based on cache hit ratio in large

S-box ciphers like Blowfish, CAST

and Khufu are possible”), 2003

Ferguson Schneier.

2002: Page publishes fast

algorithm to find DES key

from high-bandwidth timing

information. DPA-style. Many

plaintexts, each starting with

empty cache. Algorithm input:

for each plaintext, list of S-box

lookups that missed the cache.

Avoid empty cache by preloading

some S-box entries? “To

guarantee this as an effective

countermeasure we need to warm

the cache with the entirety of all

the S-boxes.”

2003: Tsunoo, Saito, Suzaki,

Shigeri, Miyauchi publish fast

algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting

with empty cache. Algorithm

input: for each plaintext,

encryption time.

“If a total-data load is executed

before processing, differences

between the frequencies of cache

misses will not be observed,

making it impossible to determine

the relationships between sets of

S-boxes.”



2002: Page publishes fast

algorithm to find DES key

from high-bandwidth timing

information. DPA-style. Many

plaintexts, each starting with

empty cache. Algorithm input:

for each plaintext, list of S-box

lookups that missed the cache.

Avoid empty cache by preloading

some S-box entries? “To

guarantee this as an effective

countermeasure we need to warm

the cache with the entirety of all

the S-boxes.”

2003: Tsunoo, Saito, Suzaki,

Shigeri, Miyauchi publish fast

algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting

with empty cache. Algorithm

input: for each plaintext,

encryption time.

“If a total-data load is executed

before processing, differences

between the frequencies of cache

misses will not be observed,

making it impossible to determine

the relationships between sets of

S-boxes.”



2002: Page publishes fast

algorithm to find DES key

from high-bandwidth timing

information. DPA-style. Many

plaintexts, each starting with

empty cache. Algorithm input:

for each plaintext, list of S-box

lookups that missed the cache.

Avoid empty cache by preloading

some S-box entries? “To

guarantee this as an effective

countermeasure we need to warm

the cache with the entirety of all

the S-boxes.”

2003: Tsunoo, Saito, Suzaki,

Shigeri, Miyauchi publish fast

algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting

with empty cache. Algorithm

input: for each plaintext,

encryption time.

“If a total-data load is executed

before processing, differences

between the frequencies of cache

misses will not be observed,

making it impossible to determine

the relationships between sets of

S-boxes.”

3. Breaking AES

Given 16-byte sequence n

and 16-byte sequence k,

AES produces

16-byte sequence AESk(n).

Uses table lookup and ˘ (xor):

e0 = tab[k[13]]˘1
e1 =

tab[k[0]˘n[0]]˘k[0]˘e0
etc.

AESk(n) = (e784; : : : ; e799).



2003: Tsunoo, Saito, Suzaki,

Shigeri, Miyauchi publish fast

algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting

with empty cache. Algorithm

input: for each plaintext,

encryption time.

“If a total-data load is executed

before processing, differences

between the frequencies of cache

misses will not be observed,

making it impossible to determine

the relationships between sets of

S-boxes.”

3. Breaking AES

Given 16-byte sequence n

and 16-byte sequence k,

AES produces

16-byte sequence AESk(n).

Uses table lookup and ˘ (xor):

e0 = tab[k[13]]˘1
e1 =

tab[k[0]˘n[0]]˘k[0]˘e0
etc.

AESk(n) = (e784; : : : ; e799).



2003: Tsunoo, Saito, Suzaki,

Shigeri, Miyauchi publish fast

algorithm to find DES key from

low-bandwidth timing information.

Many plaintexts, each starting

with empty cache. Algorithm

input: for each plaintext,

encryption time.

“If a total-data load is executed

before processing, differences

between the frequencies of cache

misses will not be observed,

making it impossible to determine

the relationships between sets of

S-boxes.”

3. Breaking AES

Given 16-byte sequence n

and 16-byte sequence k,

AES produces

16-byte sequence AESk(n).

Uses table lookup and ˘ (xor):

e0 = tab[k[13]]˘1
e1 =

tab[k[0]˘n[0]]˘k[0]˘e0
etc.

AESk(n) = (e784; : : : ; e799).

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4

bytes to 1 byte), table lookup (1

byte to 4 byte), ˘.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss creates timing

signal, clearly visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.



3. Breaking AES

Given 16-byte sequence n

and 16-byte sequence k,

AES produces

16-byte sequence AESk(n).

Uses table lookup and ˘ (xor):

e0 = tab[k[13]]˘1
e1 =

tab[k[0]˘n[0]]˘k[0]˘e0
etc.

AESk(n) = (e784; : : : ; e799).

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4

bytes to 1 byte), table lookup (1

byte to 4 byte), ˘.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss creates timing

signal, clearly visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.



3. Breaking AES

Given 16-byte sequence n

and 16-byte sequence k,

AES produces

16-byte sequence AESk(n).

Uses table lookup and ˘ (xor):

e0 = tab[k[13]]˘1
e1 =

tab[k[0]˘n[0]]˘k[0]˘e0
etc.

AESk(n) = (e784; : : : ; e799).

High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4

bytes to 1 byte), table lookup (1

byte to 4 byte), ˘.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss creates timing

signal, clearly visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.

Example: tab[k[0] ˘ n[0]] costs

hundreds of extra cycles if this

tab entry is not in L2 cache.

Knock tab[13] out of cache. See

signal when k[0] ˘ n[0] = 13.

Deduce k[0] as n[0] ˘ 13.

(Complication: cache lines;

need more work to find

bottom bits of k[0].)

More efficient: Knock half of the

tab entries out of cache.

Then first n[0] limits k[0]

to half of its possibilities.



High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4

bytes to 1 byte), table lookup (1

byte to 4 byte), ˘.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss creates timing

signal, clearly visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.

Example: tab[k[0] ˘ n[0]] costs

hundreds of extra cycles if this

tab entry is not in L2 cache.

Knock tab[13] out of cache. See

signal when k[0] ˘ n[0] = 13.

Deduce k[0] as n[0] ˘ 13.

(Complication: cache lines;

need more work to find

bottom bits of k[0].)

More efficient: Knock half of the

tab entries out of cache.

Then first n[0] limits k[0]

to half of its possibilities.



High-speed AES uses 4-byte

registers, several 1024-byte tables.

Operations: byte extraction (4

bytes to 1 byte), table lookup (1

byte to 4 byte), ˘.

Attacker can force selected

table entries out of L2 cache,

observe encryption time.

Each cache miss creates timing

signal, clearly visible despite noise

from other AES cache misses,

other software, etc.

Repeat for many plaintexts,

easily deduce key.

Example: tab[k[0] ˘ n[0]] costs

hundreds of extra cycles if this

tab entry is not in L2 cache.

Knock tab[13] out of cache. See

signal when k[0] ˘ n[0] = 13.

Deduce k[0] as n[0] ˘ 13.

(Complication: cache lines;

need more work to find

bottom bits of k[0].)

More efficient: Knock half of the

tab entries out of cache.

Then first n[0] limits k[0]

to half of its possibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If

three 64-byte lines with the same

address modulo 32768 are read,

the first line is forced out of the

L1 cache.

Athlon’s 524288-byte L2 cache

is 16-way associative. If 17 lines

with the same address modulo

8192 are read, the first line is

forced out of the L2 cache.

Force tab[13] out of cache

by accessing selected memory

locations.



Example: tab[k[0] ˘ n[0]] costs

hundreds of extra cycles if this

tab entry is not in L2 cache.

Knock tab[13] out of cache. See

signal when k[0] ˘ n[0] = 13.

Deduce k[0] as n[0] ˘ 13.

(Complication: cache lines;

need more work to find

bottom bits of k[0].)

More efficient: Knock half of the

tab entries out of cache.

Then first n[0] limits k[0]

to half of its possibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If

three 64-byte lines with the same

address modulo 32768 are read,

the first line is forced out of the

L1 cache.

Athlon’s 524288-byte L2 cache

is 16-way associative. If 17 lines

with the same address modulo

8192 are read, the first line is

forced out of the L2 cache.

Force tab[13] out of cache

by accessing selected memory

locations.



Example: tab[k[0] ˘ n[0]] costs

hundreds of extra cycles if this

tab entry is not in L2 cache.

Knock tab[13] out of cache. See

signal when k[0] ˘ n[0] = 13.

Deduce k[0] as n[0] ˘ 13.

(Complication: cache lines;

need more work to find

bottom bits of k[0].)

More efficient: Knock half of the

tab entries out of cache.

Then first n[0] limits k[0]

to half of its possibilities.

On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If

three 64-byte lines with the same

address modulo 32768 are read,

the first line is forced out of the

L1 cache.

Athlon’s 524288-byte L2 cache

is 16-way associative. If 17 lines

with the same address modulo

8192 are read, the first line is

forced out of the L2 cache.

Force tab[13] out of cache

by accessing selected memory

locations.

How does attacker do the

necessary accesses? Trivial on

multiuser computer if attacker has

account. Almost as easy without

an account: e.g., attacker sends

Java applet to user’s browser.

What if computer has no browser,

no buffer overflows, etc.? Clearly

still possible to carry out the

attack from another computer

by figuring out packets that, when

sent to (e.g.) Linux kernel, cause

accesses of appropriate memory

locations. Nobody has done this!

Would make a nice paper!



On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If

three 64-byte lines with the same

address modulo 32768 are read,

the first line is forced out of the

L1 cache.

Athlon’s 524288-byte L2 cache

is 16-way associative. If 17 lines

with the same address modulo

8192 are read, the first line is

forced out of the L2 cache.

Force tab[13] out of cache

by accessing selected memory

locations.

How does attacker do the

necessary accesses? Trivial on

multiuser computer if attacker has

account. Almost as easy without

an account: e.g., attacker sends

Java applet to user’s browser.

What if computer has no browser,

no buffer overflows, etc.? Clearly

still possible to carry out the

attack from another computer

by figuring out packets that, when

sent to (e.g.) Linux kernel, cause

accesses of appropriate memory

locations. Nobody has done this!

Would make a nice paper!



On (e.g.) Athlon: 65536-byte

L1 cache is 2-way associative. If

three 64-byte lines with the same

address modulo 32768 are read,

the first line is forced out of the

L1 cache.

Athlon’s 524288-byte L2 cache

is 16-way associative. If 17 lines

with the same address modulo

8192 are read, the first line is

forced out of the L2 cache.

Force tab[13] out of cache

by accessing selected memory

locations.

How does attacker do the

necessary accesses? Trivial on

multiuser computer if attacker has

account. Almost as easy without

an account: e.g., attacker sends

Java applet to user’s browser.

What if computer has no browser,

no buffer overflows, etc.? Clearly

still possible to carry out the

attack from another computer

by figuring out packets that, when

sent to (e.g.) Linux kernel, cause

accesses of appropriate memory

locations. Nobody has done this!

Would make a nice paper!

What about the

“guaranteed” countermeasure,

reading all AES tables before

starting AES computation?

Even if this were free, it wouldn’t

eliminate cache misses. Table

entries can drop out of cache

during the computation.

Typical AES software uses several

different arrays: input, key,

output, stack, S-boxes. Software

sometimes kicks its own S-box

lines out of L1 cache by accessing

(e.g.) the key and the stack.



How does attacker do the

necessary accesses? Trivial on

multiuser computer if attacker has

account. Almost as easy without

an account: e.g., attacker sends

Java applet to user’s browser.

What if computer has no browser,

no buffer overflows, etc.? Clearly

still possible to carry out the

attack from another computer

by figuring out packets that, when

sent to (e.g.) Linux kernel, cause

accesses of appropriate memory

locations. Nobody has done this!

Would make a nice paper!

What about the

“guaranteed” countermeasure,

reading all AES tables before

starting AES computation?

Even if this were free, it wouldn’t

eliminate cache misses. Table

entries can drop out of cache

during the computation.

Typical AES software uses several

different arrays: input, key,

output, stack, S-boxes. Software

sometimes kicks its own S-box

lines out of L1 cache by accessing

(e.g.) the key and the stack.



How does attacker do the

necessary accesses? Trivial on

multiuser computer if attacker has

account. Almost as easy without

an account: e.g., attacker sends

Java applet to user’s browser.

What if computer has no browser,

no buffer overflows, etc.? Clearly

still possible to carry out the

attack from another computer

by figuring out packets that, when

sent to (e.g.) Linux kernel, cause

accesses of appropriate memory

locations. Nobody has done this!

Would make a nice paper!

What about the

“guaranteed” countermeasure,

reading all AES tables before

starting AES computation?

Even if this were free, it wouldn’t

eliminate cache misses. Table

entries can drop out of cache

during the computation.

Typical AES software uses several

different arrays: input, key,

output, stack, S-boxes. Software

sometimes kicks its own S-box

lines out of L1 cache by accessing

(e.g.) the key and the stack.

Fixed in my 2005 AES

implementation, Gladman’s latest

implementation, etc.: squeeze

variables into a limited number

of arrays. But this still doesn’t

eliminate cache misses!

Computers run many

simultaneous processes. The

AES software can be interrupted

by another process that kicks

lines out of L1 cache and maybe

even L2 cache. Even worse, the

partial-AES cache state affects

the timing of the other process.



What about the

“guaranteed” countermeasure,

reading all AES tables before

starting AES computation?

Even if this were free, it wouldn’t

eliminate cache misses. Table

entries can drop out of cache

during the computation.

Typical AES software uses several

different arrays: input, key,

output, stack, S-boxes. Software

sometimes kicks its own S-box

lines out of L1 cache by accessing

(e.g.) the key and the stack.

Fixed in my 2005 AES

implementation, Gladman’s latest

implementation, etc.: squeeze

variables into a limited number

of arrays. But this still doesn’t

eliminate cache misses!

Computers run many

simultaneous processes. The

AES software can be interrupted

by another process that kicks

lines out of L1 cache and maybe

even L2 cache. Even worse, the

partial-AES cache state affects

the timing of the other process.



What about the

“guaranteed” countermeasure,

reading all AES tables before

starting AES computation?

Even if this were free, it wouldn’t

eliminate cache misses. Table

entries can drop out of cache

during the computation.

Typical AES software uses several

different arrays: input, key,

output, stack, S-boxes. Software

sometimes kicks its own S-box

lines out of L1 cache by accessing

(e.g.) the key and the stack.

Fixed in my 2005 AES

implementation, Gladman’s latest

implementation, etc.: squeeze

variables into a limited number

of arrays. But this still doesn’t

eliminate cache misses!

Computers run many

simultaneous processes. The

AES software can be interrupted

by another process that kicks

lines out of L1 cache and maybe

even L2 cache. Even worse, the

partial-AES cache state affects

the timing of the other process.

Occasional AES interrupts by

accident.

Can force much more

frequent interrupts with

“hyperthreading”—2005 Osvik

Shamir Tromer, independently

2005 Percival—giving high-

bandwidth timing information.

Not clear whether hyperthreading

approach can be carried out

remotely via (e.g.) Linux kernel.



Fixed in my 2005 AES

implementation, Gladman’s latest

implementation, etc.: squeeze

variables into a limited number

of arrays. But this still doesn’t

eliminate cache misses!

Computers run many

simultaneous processes. The

AES software can be interrupted

by another process that kicks

lines out of L1 cache and maybe

even L2 cache. Even worse, the

partial-AES cache state affects

the timing of the other process.

Occasional AES interrupts by

accident.

Can force much more

frequent interrupts with

“hyperthreading”—2005 Osvik

Shamir Tromer, independently

2005 Percival—giving high-

bandwidth timing information.

Not clear whether hyperthreading

approach can be carried out

remotely via (e.g.) Linux kernel.



Fixed in my 2005 AES

implementation, Gladman’s latest

implementation, etc.: squeeze

variables into a limited number

of arrays. But this still doesn’t

eliminate cache misses!

Computers run many

simultaneous processes. The

AES software can be interrupted

by another process that kicks

lines out of L1 cache and maybe

even L2 cache. Even worse, the

partial-AES cache state affects

the timing of the other process.

Occasional AES interrupts by

accident.

Can force much more

frequent interrupts with

“hyperthreading”—2005 Osvik

Shamir Tromer, independently

2005 Percival—giving high-

bandwidth timing information.

Not clear whether hyperthreading

approach can be carried out

remotely via (e.g.) Linux kernel.

It is possible to stop

all AES cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news, as we’ll see later:

Stopping cache misses isn’t

enough. There are timing leaks

in cache hits.



Occasional AES interrupts by

accident.

Can force much more

frequent interrupts with

“hyperthreading”—2005 Osvik

Shamir Tromer, independently

2005 Percival—giving high-

bandwidth timing information.

Not clear whether hyperthreading

approach can be carried out

remotely via (e.g.) Linux kernel.

It is possible to stop

all AES cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news, as we’ll see later:

Stopping cache misses isn’t

enough. There are timing leaks

in cache hits.



Occasional AES interrupts by

accident.

Can force much more

frequent interrupts with

“hyperthreading”—2005 Osvik

Shamir Tromer, independently

2005 Percival—giving high-

bandwidth timing information.

Not clear whether hyperthreading

approach can be carried out

remotely via (e.g.) Linux kernel.

It is possible to stop

all AES cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news, as we’ll see later:

Stopping cache misses isn’t

enough. There are timing leaks

in cache hits.

4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

› Bait-and-switch timings.

› Guesses reported as timings.

› My-favorite-CPU timings.

› Long-message timings.

› Timings after precomputation.

› High-variance timings.

Consequence: In the real world,

these functions are often

much slower than advertised.



It is possible to stop

all AES cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news, as we’ll see later:

Stopping cache misses isn’t

enough. There are timing leaks

in cache hits.

4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

› Bait-and-switch timings.

› Guesses reported as timings.

› My-favorite-CPU timings.

› Long-message timings.

› Timings after precomputation.

› High-variance timings.

Consequence: In the real world,

these functions are often

much slower than advertised.



It is possible to stop

all AES cache misses.

Put AES software into

operating-system kernel.

Disable interrupts.

Disable hyperthreading etc.

Read all S-boxes into cache.

Wait for reads to complete.

Encrypt some blocks of data.

The bad news, as we’ll see later:

Stopping cache misses isn’t

enough. There are timing leaks

in cache hits.

4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

› Bait-and-switch timings.

› Guesses reported as timings.

› My-favorite-CPU timings.

› Long-message timings.

› Timings after precomputation.

› High-variance timings.

Consequence: In the real world,

these functions are often

much slower than advertised.

Bait-and-switch timings:

Create two versions of your

function, a small Fun-Breakable

and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

: : : but that’s actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.



4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

› Bait-and-switch timings.

› Guesses reported as timings.

› My-favorite-CPU timings.

› Long-message timings.

› Timings after precomputation.

› High-variance timings.

Consequence: In the real world,

these functions are often

much slower than advertised.

Bait-and-switch timings:

Create two versions of your

function, a small Fun-Breakable

and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

: : : but that’s actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.



4. Skewing benchmarks

Many deceptive timings in

the cryptographic literature:

› Bait-and-switch timings.

› Guesses reported as timings.

› My-favorite-CPU timings.

› Long-message timings.

› Timings after precomputation.

› High-variance timings.

Consequence: In the real world,

these functions are often

much slower than advertised.

Bait-and-switch timings:

Create two versions of your

function, a small Fun-Breakable

and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

: : : but that’s actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.

Guesses reported as timings:

Measure only part of the

computation.

Estimate the other parts.

Example in literature: “achieves

2:2 clock cycles per byte” : : : if

the unimplemented parts are as

fast as various estimates.

The honest alternative: Measure

exactly the function call

that applications will use.



Bait-and-switch timings:

Create two versions of your

function, a small Fun-Breakable

and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

: : : but that’s actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.

Guesses reported as timings:

Measure only part of the

computation.

Estimate the other parts.

Example in literature: “achieves

2:2 clock cycles per byte” : : : if

the unimplemented parts are as

fast as various estimates.

The honest alternative: Measure

exactly the function call

that applications will use.



Bait-and-switch timings:

Create two versions of your

function, a small Fun-Breakable

and a big Fun-Slow. Report

timings for Fun-Breakable.

Example in literature: Paper

proposes 16-byte authenticator.

Says “More than 1 Gbit/sec

on a 200 MHz Pentium Pro”

: : : but that’s actually for a

breakable 4-byte authenticator.

The honest alternative:

Focus on one function.

Guesses reported as timings:

Measure only part of the

computation.

Estimate the other parts.

Example in literature: “achieves

2:2 clock cycles per byte” : : : if

the unimplemented parts are as

fast as various estimates.

The honest alternative: Measure

exactly the function call

that applications will use.

My-favorite-CPU timings: Choose

CPU where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

: : : because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.



Guesses reported as timings:

Measure only part of the

computation.

Estimate the other parts.

Example in literature: “achieves

2:2 clock cycles per byte” : : : if

the unimplemented parts are as

fast as various estimates.

The honest alternative: Measure

exactly the function call

that applications will use.

My-favorite-CPU timings: Choose

CPU where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

: : : because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.



Guesses reported as timings:

Measure only part of the

computation.

Estimate the other parts.

Example in literature: “achieves

2:2 clock cycles per byte” : : : if

the unimplemented parts are as

fast as various estimates.

The honest alternative: Measure

exactly the function call

that applications will use.

My-favorite-CPU timings: Choose

CPU where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

: : : because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.

Long-message timings: Report

time only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short packets.

Example in literature:

“2 cycles per byte”

: : : plus 2000 cycles per packet.

The honest alternative:

Report times for n-byte packets

for each n 2 f0; 1; 2; : : : ; 8192g.



My-favorite-CPU timings: Choose

CPU where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

: : : because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.

Long-message timings: Report

time only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short packets.

Example in literature:

“2 cycles per byte”

: : : plus 2000 cycles per packet.

The honest alternative:

Report times for n-byte packets

for each n 2 f0; 1; 2; : : : ; 8192g.



My-favorite-CPU timings: Choose

CPU where function is very fast.

Ignore all other CPUs.

Example in literature: “All speeds

were measured on a Pentium 4”

: : : because other chips take

many more cycles per byte

for this particular computation.

The honest alternative:

Measure every CPU you can find.

If reader doesn’t care about

a particular chip, he can ignore it.

Long-message timings: Report

time only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short packets.

Example in literature:

“2 cycles per byte”

: : : plus 2000 cycles per packet.

The honest alternative:

Report times for n-byte packets

for each n 2 f0; 1; 2; : : : ; 8192g.

Timings after precomputation:

Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.



Long-message timings: Report

time only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short packets.

Example in literature:

“2 cycles per byte”

: : : plus 2000 cycles per packet.

The honest alternative:

Report times for n-byte packets

for each n 2 f0; 1; 2; : : : ; 8192g.

Timings after precomputation:

Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.



Long-message timings: Report

time only for long messages.

Ignore per-message overhead.

Ignore applications that

handle short packets.

Example in literature:

“2 cycles per byte”

: : : plus 2000 cycles per packet.

The honest alternative:

Report times for n-byte packets

for each n 2 f0; 1; 2; : : : ; 8192g.

Timings after precomputation:

Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.

High-variance timings:

Measure each function a single

time, on a single input.

Ignore possibility of high variance

in timing.

Compare functions by comparing

single timings, promoting a few

high-variance functions.

The honest alternative:

Report several measurements,

making variance clear.



Timings after precomputation:

Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.

High-variance timings:

Measure each function a single

time, on a single input.

Ignore possibility of high variance

in timing.

Compare functions by comparing

single timings, promoting a few

high-variance functions.

The honest alternative:

Report several measurements,

making variance clear.



Timings after precomputation:

Report time after

a big key-dependent table

has been precomputed

and loaded into L1 cache.

Ignore applications that

handle many simultaneous keys.

The honest alternative:

Measure precomputation time;

measure time to load inputs

that weren’t already in cache.

High-variance timings:

Measure each function a single

time, on a single input.

Ignore possibility of high variance

in timing.

Compare functions by comparing

single timings, promoting a few

high-variance functions.

The honest alternative:

Report several measurements,

making variance clear.

5. Advanced timing leaks

2004: I write software for

Poly1305-AES, a state-of-the-art

message authenticator. Standard

Wegman-Carter structure,

combining a provably secure

“universal” hash (Poly1305) with

a hopefully-secure stream cipher

(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does

slow precomputation, making

Poly1305-AES look slow. So I

write new AES software.



High-variance timings:

Measure each function a single

time, on a single input.

Ignore possibility of high variance

in timing.

Compare functions by comparing

single timings, promoting a few

high-variance functions.

The honest alternative:

Report several measurements,

making variance clear.

5. Advanced timing leaks

2004: I write software for

Poly1305-AES, a state-of-the-art

message authenticator. Standard

Wegman-Carter structure,

combining a provably secure

“universal” hash (Poly1305) with

a hopefully-secure stream cipher

(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does

slow precomputation, making

Poly1305-AES look slow. So I

write new AES software.



High-variance timings:

Measure each function a single

time, on a single input.

Ignore possibility of high variance

in timing.

Compare functions by comparing

single timings, promoting a few

high-variance functions.

The honest alternative:

Report several measurements,

making variance clear.

5. Advanced timing leaks

2004: I write software for

Poly1305-AES, a state-of-the-art

message authenticator. Standard

Wegman-Carter structure,

combining a provably secure

“universal” hash (Poly1305) with

a hopefully-secure stream cipher

(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does

slow precomputation, making

Poly1305-AES look slow. So I

write new AES software.

I look at successive cycle counts

for authenticating ten 1-byte

messages: 3668 833 585 574 603

567 577 568 570 585.

2-byte messages: 568 572 574

575 570 563 565 569 571 574.

3-byte messages: 569 573 575

576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:

771 768 751 752 751 752 751 752

751 752 751 752 751 752.



5. Advanced timing leaks

2004: I write software for

Poly1305-AES, a state-of-the-art

message authenticator. Standard

Wegman-Carter structure,

combining a provably secure

“universal” hash (Poly1305) with

a hopefully-secure stream cipher

(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does

slow precomputation, making

Poly1305-AES look slow. So I

write new AES software.

I look at successive cycle counts

for authenticating ten 1-byte

messages: 3668 833 585 574 603

567 577 568 570 585.

2-byte messages: 568 572 574

575 570 563 565 569 571 574.

3-byte messages: 569 573 575

576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:

771 768 751 752 751 752 751 752

751 752 751 752 751 752.



5. Advanced timing leaks

2004: I write software for

Poly1305-AES, a state-of-the-art

message authenticator. Standard

Wegman-Carter structure,

combining a provably secure

“universal” hash (Poly1305) with

a hopefully-secure stream cipher

(AES in counter mode).

Poly1305 has no precomputation.

Existing AES software does

slow precomputation, making

Poly1305-AES look slow. So I

write new AES software.

I look at successive cycle counts

for authenticating ten 1-byte

messages: 3668 833 585 574 603

567 577 568 570 585.

2-byte messages: 568 572 574

575 570 563 565 569 571 574.

3-byte messages: 569 573 575

576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:

771 768 751 752 751 752 751 752

751 752 751 752 751 752.

Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads are from L1

cache!



I look at successive cycle counts

for authenticating ten 1-byte

messages: 3668 833 585 574 603

567 577 568 570 585.

2-byte messages: 568 572 574

575 570 563 565 569 571 574.

3-byte messages: 569 573 575

576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:

771 768 751 752 751 752 751 752

751 752 751 752 751 752.

Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads are from L1

cache!



I look at successive cycle counts

for authenticating ten 1-byte

messages: 3668 833 585 574 603

567 577 568 570 585.

2-byte messages: 568 572 574

575 570 563 565 569 571 574.

3-byte messages: 569 573 575

576 571 564 566 570 572 575.

Interesting. Where do these

numbers come from?

Another computation, same CPU:

771 768 751 752 751 752 751 752

751 752 751 752 751 752.

Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads are from L1

cache!

Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that these are the

only effects.



Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads are from L1

cache!

Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that these are the

only effects.



Load-after-store conflicts:

On (e.g.) Pentium III,

load from L1 cache is

slightly slower if it involves

same cache line modulo 4096

as a recent store.

This timing variation happens

even if all loads are from L1

cache!

Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that these are the

only effects.

6. Breaking AES in cache

2004: I point out

cache-hit time variations

in OpenSSL and other

popular AES implementations.

2005: I extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.



Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that these are the

only effects.

6. Breaking AES in cache

2004: I point out

cache-hit time variations

in OpenSSL and other

popular AES implementations.

2005: I extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.



Cache-bank throughput limits:

On (e.g.) Athlon,

can perform two loads

from L1 cache every cycle.

Exception: Second load

waits for a cycle if loads

are from same cache “bank.”

Time for cache hit

again depends on array index.

No guarantee that these are the

only effects.

6. Breaking AES in cache

2004: I point out

cache-hit time variations

in OpenSSL and other

popular AES implementations.

2005: I extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.



6. Breaking AES in cache

2004: I point out

cache-hit time variations

in OpenSSL and other

popular AES implementations.

2005: I extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.



6. Breaking AES in cache

2004: I point out

cache-hit time variations

in OpenSSL and other

popular AES implementations.

2005: I extract complete key

from OpenSSL timings,

making no effort to

knock table entries out of cache.

Many random known plaintexts.

Graph has x-coordinates

0 through 255.

y-coordinate: average cycles

to encrypt random plaintext

with k[13]˘ n[13] = x,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test

code, this CPU, etc.)

is maximized when

k[13]˘ n[13] = 8.

3-cycle signal.



Graph has x-coordinates

0 through 255.

y-coordinate: average cycles

to encrypt random plaintext

with k[13]˘ n[13] = x,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test

code, this CPU, etc.)

is maximized when

k[13]˘ n[13] = 8.

3-cycle signal.



Graph has x-coordinates

0 through 255.

y-coordinate: average cycles

to encrypt random plaintext

with k[13]˘ n[13] = x,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test

code, this CPU, etc.)

is maximized when

k[13]˘ n[13] = 8.

3-cycle signal.
Graph for k[5]˘ n[5].



Graph has x-coordinates

0 through 255.

y-coordinate: average cycles

to encrypt random plaintext

with k[13]˘ n[13] = x,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test

code, this CPU, etc.)

is maximized when

k[13]˘ n[13] = 8.

3-cycle signal.
Graph for k[5]˘ n[5].



Graph has x-coordinates

0 through 255.

y-coordinate: average cycles

to encrypt random plaintext

with k[13]˘ n[13] = x,

minus average cycles to encrypt

unrestricted random plaintext.

Encryption time (for this test

code, this CPU, etc.)

is maximized when

k[13]˘ n[13] = 8.

3-cycle signal.
Graph for k[5]˘ n[5].

This graph has much larger max,

presumably L1 cache miss.



Graph for k[5]˘ n[5].
This graph has much larger max,

presumably L1 cache miss.



Graph for k[5]˘ n[5].
This graph has much larger max,

presumably L1 cache miss.

2006: Mironov reports ciphertext-

only attack deducing key after a

few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:

Understand network noise!

Can we see ı 1-cycle signals

from (e.g.) median of

106 packet timings?

Would be another nice paper.

I’m not doing this;

feel free to jump in.



This graph has much larger max,

presumably L1 cache miss.

2006: Mironov reports ciphertext-

only attack deducing key after a

few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:

Understand network noise!

Can we see ı 1-cycle signals

from (e.g.) median of

106 packet timings?

Would be another nice paper.

I’m not doing this;

feel free to jump in.



This graph has much larger max,

presumably L1 cache miss.

2006: Mironov reports ciphertext-

only attack deducing key after a

few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:

Understand network noise!

Can we see ı 1-cycle signals

from (e.g.) median of

106 packet timings?

Would be another nice paper.

I’m not doing this;

feel free to jump in.

7. Misdesigning cryptography

Primary goal of cryptography:

Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.

Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.



2006: Mironov reports ciphertext-

only attack deducing key after a

few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:

Understand network noise!

Can we see ı 1-cycle signals

from (e.g.) median of

106 packet timings?

Would be another nice paper.

I’m not doing this;

feel free to jump in.

7. Misdesigning cryptography

Primary goal of cryptography:

Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.

Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.



2006: Mironov reports ciphertext-

only attack deducing key after a

few thousand ciphertexts.

Focus on last round

of AES computation.

Obvious next research step:

Understand network noise!

Can we see ı 1-cycle signals

from (e.g.) median of

106 packet timings?

Would be another nice paper.

I’m not doing this;

feel free to jump in.

7. Misdesigning cryptography

Primary goal of cryptography:

Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.

Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don’t believe that attacks work

until they’ve been announced

in the New York Times.

For timing attacks: If attack

hasn’t been demonstrated,

assume it doesn’t work.

Don’t use obviously-constant-time

software such as Phelix.



7. Misdesigning cryptography

Primary goal of cryptography:

Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.

Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don’t believe that attacks work

until they’ve been announced

in the New York Times.

For timing attacks: If attack

hasn’t been demonstrated,

assume it doesn’t work.

Don’t use obviously-constant-time

software such as Phelix.



7. Misdesigning cryptography

Primary goal of cryptography:

Continued employment for

cryptographers.

How to achieve this?

Example: Use 512-bit RSA.

Oops, broken? Use 768-bit RSA.

Oops, broken? Use 1024-bit RSA.

Don’t believe that attacks work

until they’ve been announced

in the New York Times.

For timing attacks: If attack

hasn’t been demonstrated,

assume it doesn’t work.

Don’t use obviously-constant-time

software such as Phelix.

Don’t use cryptographic hardware.

Build complex multi-layer

cryptographic systems.

Don’t communicate adequately

between people designing

different layers.

e.g. Most CPU designers fail to

thoroughly document CPU speed.

Challenge: Market a CPU

with a variable-time adder.



Don’t believe that attacks work

until they’ve been announced

in the New York Times.

For timing attacks: If attack

hasn’t been demonstrated,

assume it doesn’t work.

Don’t use obviously-constant-time

software such as Phelix.

Don’t use cryptographic hardware.

Build complex multi-layer

cryptographic systems.

Don’t communicate adequately

between people designing

different layers.

e.g. Most CPU designers fail to

thoroughly document CPU speed.

Challenge: Market a CPU

with a variable-time adder.


