
A brief survey

of post-quantum cryptography

D. J. Bernstein

University of Illinois at Chicago



“Once the enormous

energy boost that quantum

computers are expected

to provide hits the street,

most encryption security

standards—and any

other standard based on

computational difficulty—

will fall, experts believe.”

(Magiq’s web site, 2008;

the “experts” aren’t named)



Is cryptography dead?

Imagine:

15 years from now

someone announces

successful construction

of a large quantum computer.

New York Times headline:

“INTERNET CRYPTOGRAPHY

KILLED BY PHYSICISTS.”

Users panic.

What happens to cryptography?



RSA: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.

“They’re all dead, Dave.”



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.

“They’re all dead, Dave.”

But we have other types of

cryptographic systems!

Hash-based cryptography.

Example: 1979 Merkle hash-tree

public-key signature system.



Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU.”

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv�”

public-key signature system.

Secret-key cryptography.

Example: 1998 Daemen–Rijmen

“Rijndael” cipher, aka “AES.”



Nobody has figured out

a way to apply Shor’s algorithm

to any of these systems.

Grover’s algorithm

does have some applications,

but cryptographers

can easily compensate

by scaling up somewhat.



“Maybe there’s a better attack!”

This was already a familiar risk

before quantum computers.

This is why the community

puts tremendous effort

into cryptanalysis.

Results of cryptanalysis:

Some systems are killed.

Some systems need larger keys.

Some systems inspire confidence.



1978 RSA paper mentions

Schroeppel’s “linear sieve” for

factorization. Need b2+o(1)-bit

RSA key for b-bit security.

1988 Pollard et al.: “Number-field

sieve.” Need b3+o(1)-bit

RSA key for b-bit security.

Many improvements since then,

but still b3+o(1)

: : : against classical computers.

1994 Shor: Need intolerably large

RSA key for b-bit security

against quantum computers.



1978 McEliece paper

mentions a decoding algorithm.

Need code dimension

b1+o(1) for b-bit security.

Many improvements since then,

but still dimension b1+o(1)

against classical computers.

Still dimension b1+o(1)

against quantum computers.

If McEliece security is so good,

why are we still using RSA?

Answer: McEliece key is huge.



Pre-quantum cryptography:

Cryptographers design systems to

scramble and unscramble data.

RSA, McEliece, AES, many more.

Cryptanalysts break some systems

using < 2b classical operations.

Tools: NFS, LLL, F4, etc.

Unbroken systems:

RSA with b3+o(1) bits,

McEliece with dimension b1+o(1),

AES if b � 256, etc.

Algorithm designers and

implementors find the fastest

unbroken systems.



Post-quantum cryptography:

Cryptographers design systems to

scramble and unscramble data.

RSA, McEliece, AES, many more.

Cryptanalysts break some systems

using < 2b quantum operations.

Tools: NFS, LLL, F4, etc.

plus Shor, Grover, etc.

Unbroken systems:

McEliece with dimension b1+o(1),

AES if b � 128, etc.

Algorithm designers and

implementors find the fastest

unbroken systems.



A hash-based signature system

Standardize a 256-bit

hash function H.

Signer’s public key: 512 strings

y1[0]; y1[1]; : : : ; y256[0]; y256[1],

each 256 bits.

Total: 131072 bits.

Signature of a message m:

256-bit strings r; x1; : : : ; x256

such that the bits (h1; : : : ; h256)

of H(r;m) satisfy

y1[h1] = H(x1), : : : ,
y256[h256] = H(x256).



Signer’s secret key:

512 independent uniform

random 256-bit strings

x1[0]; x1[1]; : : : ; x256[0]; x256[1].

Signer computes

y1[0]; y1[1]; : : : ; y256[0]; y256[1]

as H(x1[0]); H(x1[1]); : : : ;
H(x256[0]); H(x256[1]).

To sign m:

generate uniform random r;
H(r;m) = (h1; : : : ; h256);

reveal (r; x1[h1]; : : : ; x256[h256]);

discard remaining x values;

refuse to sign more messages.



This is the “Lamport–Diffie

one-time signature system.”

How to sign

more than one message?

Easy answer: “Chaining.”

Signer expands m to include

a newly generated public key

that will sign next message.

More advanced answers

(Merkle et al.)

scale logarithmically with the

number of messages signed.



A code-based encryption system

Receiver’s public key:

1800� 3600 bit matrix K.

Messages suitable for encryption:

3600-bit strings of “weight 150”;

i.e., 3600-bit strings

with exactly 150 nonzero bits.

Encryption of m
is 1800-bit string Km.



Attacker, by linear algebra,

can easily work backwards

from Km to some v
such that Kv = Km.

Huge number of choices of v.
Finding weight-150 choice

(“syndrome-decoding K”)

seems extremely difficult

for most choices of K.

Best attacks? See next talk.



Receiver secretly generates

public key K with a

“hidden Goppa code” structure

that allows fast decoding.

Detecting this structure

seems even more difficult than

syndrome-decoding random K.



Receiver starts with secret

monic degree-150 irreducible

polynomial g 2 F4096[x] and

distinct �1; : : : ; �3600 2 F4096.

“Patterson’s algorithm”

syndrome-decodes the matrix

H =

0
BBBBBBBBBBBB�

1

g(�1)
� � � 1

g(�3600)

�1

g(�1)
� � � �3600

g(�3600)

...
. . .

...

�149
1

g(�1)
� � � �149

3600

g(�3600)

1
CCCCCCCCCCCCA

:



Receiver also has

a secret invertible

1800� 1800 matrix S
and a secret 3600� 3600

permutation matrix P .

Receiver’s public key K
is the product SHP .

Given ciphertext Km = SHPm:

receiver computes HPm;

decodes H to obtain Pm;

computes m.



This is 1986 Niederreiter variant

of McEliece’s original system.

Reducing K to “systematic form”

reduces space to 3211248 bits.

Many other improvements.

Lattice-based cryptography:

similar; more complicated;

maybe more attractive!

See tomorrow’s talk.



An MQ signature system

Signer’s public key:

polynomials P1; : : : ; P300

2 F2[w1; : : : ; w600].

Extra requirements

on each of these polynomials:

degree � 2, no squares;

i.e., linear combination of

1; w1; : : : ; w600;
w1w2; w1w3; : : : ; w599w600.

Overall 54090300 bits.



Signature of m:

a 300-bit string r and

values w1; : : : ; w600 2 F2

such that H(r;m) =

(P1(w1; : : : ; w600); : : : ;
P300(w1; : : : ; w600)).

Only 900 bits!

Verifying a signature uses

one evaluation of H and

millions of bit operations

to evaluate P1; : : : ; P300.



Main challenge for attacker:

find bits w1; : : : ; w600

producing specified outputs

(P1(w1; : : : ; w600); : : : ;
P300(w1; : : : ; w600)).

Random guess: on average,

only 2�300 chance of success.

“XL” etc.: fewer operations,

but still not practical.



Signer generates public key

with secret “HFEv�” structure.

Standardize a degree-450

irreducible polynomial ' 2 F2[t].
Define L = F2[t]='.

Critical step in signing:

finding roots of a

secret polynomial in L[x]

of degree at most 300.



Secret polynomial is chosen with

all nonzero exponents of the form

2i + 2j or 2i. (So degree � 288.)

If x0; x1; : : : ; x449 2 F2 and

x = x0 + x1t+ � � �+ x449t449 then

x2 = x0 + x1t2 + � � �+ x449t898,

x4 = x0 + x1t4 + � � �+ x449t1796,

etc.

In general, x2i+2j
is a quadratic polynomial

in the variables x0; : : : ; x449.



Signer’s secret key:

invertible 600� 600 matrix S;

300� 450 matrix T of rank 300;

Q 2 L[x; v1; v2; : : : ; v150].

Each term in Q
has one of the forms

`x2i+2j with ` 2 L, 2i < 2j ,
2i + 2j � 300;

`x2ivj with ` 2 L, 2i � 300;

`vivj ;
`x2i ;
`vj ;
`.



To compute public key:

Compute S(w1; : : : ; w600) =

(x0; : : : ; x449; v1; : : : ; v150).

In L[w1; : : : ; w600]

compute x =
Pxiti

and y = Q(x; v1; v2; : : : ; v150)

modulo w2
1�w1; : : : ; w2

600�w600.

Write y = y0 + � � �+ y449t449

with yi 2 F2[w1; : : : ; w600].

Compute (P1; : : : ; P300) =

T (y0; y1; : : : ; y449).



Sign by working backwards.

Given values (P1; : : : ; P300), invert

T to obtain values (y0; : : : ; y449).

2150 choices; randomize.

Choose (v1; : : : ; v150) randomly.

Substitute into Q(x; v1; : : : ; v150)

to obtain Q(x) 2 L[x].

Solve Q(x) = y for x 2 L.

If several roots, randomize.

If no roots, start over.

Invert S to obtain signature.



This is an “HFEv�” example.

“HFE”: “Hidden Field Equation”

Q(x) = y.
“�”: publish only 300 equations

instead of 450.

“v”: “vinegar” variables

v1; : : : ; v150.

State-of-the-art attack

breaks a simplified system with

0 vinegar variables, 1 term in Q.

Can build MQ systems

in many other ways.



Preparing for the future

When someone announces

a large quantum computer

we’ll switch to McEliece etc.

Why worry about the switch

now?

Answer 1: We need time

to improve efficiency.

Answer 2: We need time

to build confidence.

Answer 3: We need time

to improve usability.



Have you implemented

a public-key system?

Send your software to eBATS:

ECRYPT Benchmarking of

Asymmetric Systems.

Now integrated into eBACS:

ECRYPT Benchmarking of

Cryptographic Systems.

http://bench.cr.yp.to



2003.09 Bernstein, sci.crypt:

“I’m thinking about

publishing a paper

on post-quantum cryptography.

This isn’t too early

to start planning ahead

for the very real possibility

of quantum computers.”

2004.10 Buchmann et al.,

“Post-Quantum Signatures”:

“We would like to thank

Dan Bernstein for inventing

the notion ‘post-quantum

cryptography.’ ”



2004.10 Silverberg to Bernstein:

Hey, let’s run a workshop.

2004.10 Bernstein to Silverberg:

How about a workshop on

post-quantum cryptography?

Independently, late 2004:

Wolf proposes workshop on

post-quantum cryptography.

Independently, late 2004:

Ding proposes workshop on

“Cryptology in the

quantum computer era.”



2005.05 Lange manages to herd

Bernstein, Ding, Nguyen, Wolf,

et al.; ECRYPT starts

organizing PQCrypto 2006.

2006.05: PQCrypto 2006

in Leuven, Belgium.

2008.10: PQCrypto 2008

here in Cincinnati.

End of 2008: Survey book!





Bernstein: “Introduction to

post-quantum cryptography.”

Hallgren, Vollmer:

“Quantum computing.”

Buchmann, Dahmen, Szydlo:

“Hash-based digital signature

schemes.”

Overbeck, Sendrier:

“Code-based cryptography.”

Micciancio, Regev:

“Lattice-based cryptography.”

Ding, Yang: “Multivariate

public key cryptography.”


