
eBACS:

ECRYPT Benchmarking

of Cryptographic Systems

http://bench.cr.yp.to

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven



European Union has funded

NESSIE project (2000–2003),

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

NESSIE’s performance evaluators

tuned C implementations

of many cryptographic systems,

all supporting the same API;

wrote a benchmarking toolkit;

ran the toolkit on 25 computers.

Many specific performance results:

e.g., 24 cycles/byte on P4

for 128-bit AES encryption.



ECRYPT I had five “virtual labs.”

STVL, symmetric-techniques lab,

included four working groups.

STVL WG 1, stream-cipher group,

ran eSTREAM (2004–2008).

De Cannière published

eSTREAM benchmarking toolkit.

Stream-cipher implementations

matching the benchmarking API

were contributed by designers,

published, often tuned;

benchmarked on many computers.

e.g. 18 cycles/byte on P4 for

third-party asm AES in toolkit.



2006: VAMPIRE, “Virtual

Application and Implementation

Lab,” started eBATS

(“ECRYPT Benchmarking

of Asymmetric Systems”),

measuring efficiency of public-key

encryption, signatures, DH.

Published a new toolkit.

Have written, collected, published

46 public-key implementations

matching the benchmarking API.

Benchmarked on many computers.



2008: VAMPIRE started eBASC

(“ECRYPT Benchmarking

of Stream Ciphers”) for

post-eSTREAM benchmarks.

VAMPIRE also started eBASH

(“ECRYPT Benchmarking

of All Submitted Hashes”).

eBACS (“ECRYPT Benchmarking

of Cryptographic Systems”)

includes eBATS, eBASH, eBASC.

Continues under ECRYPT II.

New toolkit, API; coordinated

with CACE library (NaCl).

AES now 14 cycles/byte on P4.



eBASH ! public

eBASH has already collected

51 implementations of

28 hash functions in 14 families.

http://bench.cr.yp.to

/results-hash.html

already shows

measurements on 69 machines;

95 machine-ABI combinations.

Each implementation is

recompiled 1201 times

with various compiler options

to identify best working option

for implementation, machine.



e.g. 576 bytes, katana (2137MHz

Core 2 Duo 6f6), 64-bit ABI:

25% 50% 75% hash
3.53 3.54 3.56 edonr512
4.89 4.89 4.90 bmw512
6.51 6.53 6.53 md5
6.68 6.68 6.69 edonr256
9.18 9.21 9.22 bmw256
9.51 9.53 9.58 sha1

11.94 11.94 11.97 keccakr1024c576
12.22 12.24 12.26 blake64
16.21 16.25 16.25 sha512
16.81 16.81 16.82 ripemd160
19.44 19.46 19.46 blake32
23.57 23.67 23.72 sha256
26.83 26.85 26.86 groestl256

etc.



Tables show medians, quartiles

of cycles/byte to hash

8-byte message,

64-byte message,

576-byte message,

1536-byte message,

4096-byte message,

(extrapolated) long message.

Actually have much more data.

e.g. Reports show best options.

e.g. Graphs show medians for

0-byte message, 1-byte message,

2-byte message, 3-byte message,

4-byte message, 5-byte message,

: : :, 2048-byte message.







Submitter ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64



Submitter ! eBASH

Define output size in api.h:

#define CRYPTO_BYTES 64

Define hash function in hash.c,

e.g. wrapping existing NIST API:

#include "crypto_hash.h"

#include "SHA3api_ref.h"

int crypto_hash(

unsigned char *out,

const unsigned char *in,

unsigned long long inlen)

{ Hash(crypto_hash_BYTES*8

,in,inlen*8,out);

return 0; }



Send to the mailing list

the URL of a tar.gz

with one directory

crypto_hash/yourhash/ref

containing hash.c etc.

Measurements magically appear!

Much easier than trying

to do your own benchmarks.

More details and options:

http://bench.cr.yp.to

/call-hash.html

Also easy for third parties

to run the benchmark suite.


