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“Table lookup: A huge security problem”



“Table lookup: A huge security problem”

◮ Side channel attacks only apply when a

secret is involved (e.g. KDF, HMAC).

Many applications do not hash secret

information.

◮ There are other side channels, e.g.,

power. Modular additions are hard to

protect against DPA.

◮ An implementation can be protected, at

some cost, if required.



“Table lookup: A huge security problem”



“Table lookup: A huge security problem”

◮ Expect second AES
competition in 2012 !



“[AES-based designs are] insecure on CPUs

without AES instruction”



“[AES-based designs are] insecure on CPUs

without AES instruction”

◮ Bitsliced implementations resist

cache-timing attacks.

◮ They can actually be faster than

table-based implementations.



“Recommendation: avoid AES round

function”



“Recommendation: avoid AES round

function”

◮ Using AES also has advantages:
◮ Security analysis
◮ Confidence
◮ Implementation

◮ ARX-based vs. AES-based?
◮ No indication that one is better than the

other.



“Recommendation: optimize for 64-bit

(rather than 32-bit) performance”



“Recommendation: optimize for 64-bit

(rather than 32-bit) performance”

◮ “The low end does not go away” (Bruce

Schneier)

◮ Extreme optimisations for one platform

(Intel Core2) often hurts other

platforms.

◮ 32-bit optimised primitives are still fast

on 64-bit, but not the other way around.



“Recommendation: also evaluate

implementation without XMM registers”



“Recommendation: also evaluate

implementation without XMM registers”

◮ Also pay attention to performance on

32-bit and 8-bit machines.



“Cannot use multiple cores”



“Cannot use multiple cores”

◮ Applications that cannot use multiple

cores typically process only small

messages.

◮ Some applications can use multiple

cores, and those sometimes hash very

long messages.



“SHA-256 (20 c/B) is a performance

problem”



“SHA-256 (20 c/B) is a performance

problem”

◮ Why is it a problem?
◮ Signatures? No.
◮ HMAC? No, use fast dedicated MAC.
◮ . . . ?

◮ “The security provided by an algorithm

is the most important factor in the

evaluation.” (NIST)



And now for something
completely different. . .



Sponges are bad

◮ Can’t fit into small state after block.

◮ No key schedule to compute in parallel.

◮ No compression function; nothing

reusable.

◮ Pseudo-collisions/preimages are easy to

find.

◮ Large state → slow full diffusion.

◮ Sponges are recent; not well studied.



Sponges are good

◮ Immediate use of block saves space.

◮ Very fast diffusion; extra speed.

◮ No counters.

◮ Not many sponges broken so far.

◮ Sponges are recent; they improve over

other designs.



Disclaimer
◮ Most of us are involved with one or

more SHA-3 candidates.
◮ From 15 different teams in total.

◮ Every team has different priorities.
◮ Every design was made to fit those.

◮ Not the other way around.
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