
More engineering
considerations for the SHA-3

hash function

Jean-Philippe Aumasson Dan Bernstein Charles Bouillaguet
Daniel Brown Orr Dunkelman Sebastiaan Indesteege

Emilia Käsper Dmitry Khovratovich Jongsung Kim Özgül Küçük
Gaëtan Leurent Krystian Matusiewicz Florian Mendel

Ivica Nikolić Svetla Nikova Dag Arne Osvik Thomas Peyrin
Christian Rechberger Vincent Rijmen Ron Rivest

Martin Schläffer Søren Thomsen Elmar Tischhauser
Hirotaka Yoshida Dai Watanabe



“Table lookup: A huge security problem”



“Table lookup: A huge security problem”

◮ Side channel attacks only apply when a

secret is involved (e.g. KDF, HMAC).

Many applications do not hash secret

information.

◮ There are other side channels, e.g.,

power. Modular additions are hard to

protect against DPA.

◮ An implementation can be protected, at

some cost, if required.



“Table lookup: A huge security problem”



“Table lookup: A huge security problem”

◮ Expect second AES
competition in 2012 !



“[AES-based designs are] insecure on CPUs

without AES instruction”



“[AES-based designs are] insecure on CPUs

without AES instruction”

◮ Bitsliced implementations resist

cache-timing attacks.

◮ They can actually be faster than

table-based implementations.



“Recommendation: avoid AES round

function”



“Recommendation: avoid AES round

function”

◮ Using AES also has advantages:
◮ Security analysis
◮ Confidence
◮ Implementation

◮ ARX-based vs. AES-based?
◮ No indication that one is better than the

other.



“Recommendation: optimize for 64-bit

(rather than 32-bit) performance”



“Recommendation: optimize for 64-bit

(rather than 32-bit) performance”

◮ “The low end does not go away” (Bruce

Schneier)

◮ Extreme optimisations for one platform

(Intel Core2) often hurts other

platforms.

◮ 32-bit optimised primitives are still fast

on 64-bit, but not the other way around.



“Recommendation: also evaluate

implementation without XMM registers”



“Recommendation: also evaluate

implementation without XMM registers”

◮ Also pay attention to performance on

32-bit and 8-bit machines.



“Cannot use multiple cores”



“Cannot use multiple cores”

◮ Applications that cannot use multiple

cores typically process only small

messages.

◮ Some applications can use multiple

cores, and those sometimes hash very

long messages.



“SHA-256 (20 c/B) is a performance

problem”



“SHA-256 (20 c/B) is a performance

problem”

◮ Why is it a problem?
◮ Signatures? No.
◮ HMAC? No, use fast dedicated MAC.
◮ . . . ?

◮ “The security provided by an algorithm

is the most important factor in the

evaluation.” (NIST)



And now for something
completely different. . .



Sponges are bad

◮ Can’t fit into small state after block.

◮ No key schedule to compute in parallel.

◮ No compression function; nothing

reusable.

◮ Pseudo-collisions/preimages are easy to

find.

◮ Large state → slow full diffusion.

◮ Sponges are recent; not well studied.



Sponges are good

◮ Immediate use of block saves space.

◮ Very fast diffusion; extra speed.

◮ No counters.

◮ Not many sponges broken so far.

◮ Sponges are recent; they improve over

other designs.



Disclaimer
◮ Most of us are involved with one or

more SHA-3 candidates.
◮ From 15 different teams in total.

◮ Every team has different priorities.
◮ Every design was made to fit those.

◮ Not the other way around.

Jean-Philippe Aumasson Dan Bernstein Charles Bouillaguet
Daniel Brown Orr Dunkelman Sebastiaan Indesteege Emilia Käsper

Dmitry Khovratovich Jongsung Kim Özgül Küçük Gaëtan Leurent
Krystian Matusiewicz Florian Mendel Ivica Nikolić Svetla Nikova

Dag Arne Osvik Thomas Peyrin Christian Rechberger
Vincent Rijmen Ron Rivest Martin Schläffer Søren Thomsen

Elmar Tischhauser Hirotaka Yoshida Dai Watanabe


