
Code-based

post-quantum

cryptography

D. J. Bernstein

University of Illinois at Chicago



“Once the enormous

energy boost that quantum

computers are expected

to provide hits the street,

most encryption security

standards—and any

other standard based on

computational difficulty—

will fall, experts believe.”

(Magiq’s web site, 2008;

the “experts” aren’t named)



Is cryptography dead?

Imagine:

15 years from now

someone announces

successful construction

of a large quantum computer.

New York Times headline:

“INTERNET CRYPTOGRAPHY

KILLED BY PHYSICISTS.”

Users panic.

What happens to cryptography?



RSA: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.

“They’re all dead, Dave.”



RSA: Dead.

DSA: Dead.

ECDSA: Dead.

ECC in general: Dead.

HECC in general: Dead.

Buchmann–Williams: Dead.

Class groups in general: Dead.

“They’re all dead, Dave.”

But we have other types of

cryptographic systems!

Hash-based cryptography.

Example: 1979 Merkle hash-tree

public-key signature system.



Code-based cryptography.

Example: 1978 McEliece

hidden-Goppa-code

public-key encryption system.

Lattice-based cryptography.

Example: 1998 “NTRU.”

Multivariate-quadratic-

equations cryptography.

Example:

1996 Patarin “HFEv�”

public-key signature system.

Secret-key cryptography.

Example: 1998 Daemen–Rijmen

“Rijndael” cipher, aka “AES.”





Bernstein: “Introduction to

post-quantum cryptography.”

Hallgren, Vollmer:

“Quantum computing.”

Buchmann, Dahmen, Szydlo:

“Hash-based digital signature

schemes.”

Overbeck, Sendrier:

“Code-based cryptography.”

Micciancio, Regev:

“Lattice-based cryptography.”

Ding, Yang: “Multivariate

public key cryptography.”



The McEliece cryptosystem

Receiver’s public key: “random”

500� 1024 matrix K over F2.

Specifies linear F1024
2 ! F500

2 .

Messages suitable for encryption:

1024-bit strings of weight 50;

i.e., fm 2 F1024
2 :

#fi : mi = 1g = 50g.
Encryption of m is Km 2 F500

2 .

Can use m as secret AES key

to encrypt much more data.



Attacker, by linear algebra,

can easily work backwards

from Km to some v 2 F1024
2

such that Kv = Km.

i.e. Attacker finds some

element v 2m + KerK.

Note that #KerK � 2524.

Attacker wants to decode v:
to find element of KerK
at distance only 50 from v.
Presumably unique, revealing m.

But decoding isn’t easy!



Information-set decoding

Choose random size-500 subset

S � f1; 2; 3; : : : ; 1024g.
For typical K: Good chance

that FS2 ,! F1024
2

K��! F500
2

is invertible.

Hope m 2 FS2 ; chance � 2�53.

Apply inverse map to Km,

revealing m if m 2 FS2 .

If m =2 FS2 , try again.

� 280 operations overall.



Various improvements:

1988 Lee–Brickell;

1988 Leon;

1989 Stern;

1990 van Tilburg;

1994 Canteaut–Chabanne;

1998 Canteaut–Chabaud;

1998 Canteaut–Sendrier.

268 Alpha cycles.

2008 Bernstein–Lange–Peters:

further improvements;

258 Core 2 Quad cycles;

carried out successfully!



1988 Lee–Brickell idea:

Hope that m + e 2 FS2
for some weight-2 vector e.
Reuse one matrix inversion

for all choices of e.
1989 Stern idea:

Hope that m + e + e0 2 FS2
for low-weight vectors e; e0.
Search for collision between

function of e, function of e0.
2008 Bernstein–Lange–Peters:

more reuse, optimization, etc.



Modern McEliece

Easily rescue system by using

a larger public key: “random”

(n=2)� n matrix K over F2.

e.g., 1800� 3600.

Larger weight: � n=(2 lgn).

e.g. m 2 F3600
2 of weight 150.

All known attacks scale badly:

roughly 2n=(2 lgn) operations.

For much more precise analysis

see 2009 Bernstein–Lange–

Peters–van Tilborg.



Receiver secretly generates

public key K with a

hidden Goppa-code structure

that allows fast decoding.

Namely: K = SHP for secret

(n=2)� (n=2) invertible matrix S,

(n=2)� n Goppa matrix H,

n� n permutation matrix P .

Detecting this structure

seems even more difficult

than attacking random K.



Goppa codes

Fix q 2 f8; 16; 32; : : :g;
t 2 f2; 3; : : : ; b(q � 1)= lg qg;
n 2 ft lg q + 1; t lg q + 2; : : : ; qg.
e.g. q = 1024, t = 50, n = 1024.

or q = 4096, t = 150, n = 3600.

Receiver’s matrix H is

the parity-check matrix

for the classical (genus-0)

irreducible length-n degree-t
binary Goppa code defined by

a monic degree-t irreducible

polynomial g 2 Fq[x] and

distinct a1; a2; : : : ; an 2 Fq.



: : :which means: H =

0
BBBBBBBBBBBB�

1

g(a1)
� � � 1

g(an)

a1

g(a1)
� � � an

g(an)

...
. . .

...

at�1
1

g(a1)
� � � at�1n

g(an)

1
CCCCCCCCCCCCA

:

View each element of Fq here

as a column in F
lg q
2 .

Then H : Fn2 ! F
t lg q
2 .



More useful view: Consider

the map m 7!P
imi=(x� ai)

from Fn2 to Fq[x]=g.
H is the matrix for this map

where Fn2 has standard basis

and Fq[x]=g has basis

bg=x, �g=x2
�
, : : : , �g=xt�.

One-line proof: In Fq[x] have

g � g(ai)
x� ai

=
X

j�0

aji
j
g=xj+1

k
.



Decoding Goppa codes

1975 Patterson: Given Hm,

can quickly find m
if weight of m is � t.
Given ciphertext Km = SHPm:

receiver computes HPm
by applying secret S�1;

decodes H to obtain Pm
by Patterson’s algorithm;

computes message m
by applying secret P�1.



Patterson input is r 2 Fq[x]=g
having form

P
imi=(x� ai)

where m 2 Fn2 has weight � t.
Output will be m.

If r = 0, output 0 and stop.

If r 6= 0:

Lift
p
r�1 � x from Fq[x]=g

to s 2 Fq[x] of degree < t.
Consider lattice L � Fq[x]2

generated by (s; 1) and (g; 0).

Define length of (�; �)

as norm of �2 + x�2.

Find a minimum-length

nonzero vector (�0; �0) 2 L.



Monic part of �0 = �2
0 + x�2

0

is exactly
Q

i:mi=1(x� ai).
Factor �0 and print m.

Why this works:

Define � =
Q

i:mi=1(x� ai).
Write � as �2 + x�2 in Fq[x].

Have �0=� = r in Fq[x]=g
so �2=(�2 + x�2) = 1=(s2 + x)

so s = �=� in Fq[x]=g;
i.e., (�; �) 2 L.

Volume of L forces

(�; �) 2 (�0; �0)Fq[x]

so � = square � �0;
� is squarefree so square 2 Fq.



What if Patterson is used for

m having weight > t?
Volume argument fails.

(�; �) =2 (�0; �0)Fq[x].

But can compute short basis

(�0; �0); (�1; �1) of L.

Then � is a linear combination

of �0 = �2
0 + x�2

0

and �1 = �2
1 + x�2

1 .

Coefficients are small squares;

“small” depends on weight of m.



Divisors in residue classes

Want all divisors of n in u + vZ,

given positive integers u; v; n
with gcdfv; ng = 1.

Easy if v � n1=2.
1984 Lenstra: polynomial-time

algorithm for v � n1=3.
1997 Konyagin–Pomerance:

polynomial-time algorithm for

v � n3=10.

1998 Coppersmith–Howgrave-

Graham–Nagaraj: polynomial-

time algorithm for v � n1=4+�.



2000 Boneh: can view same

algorithm as a list-decoding

algorithm for CRT codes.

Function-field analogue is

famous 1999 Guruswami–Sudan

algorithm for list decoding

of Reed–Solomon codes.

Can build grand unified picture

of “Coppersmith-type” algorithms

and “Sudan-type” algorithms.

See, e.g., my survey paper

“Reducing lattice bases

to find small-height values

of univariate polynomials.”



2008 Bernstein:

Tweak parameters

in the same algorithm

to find all divisors of n that are

linear combinations of u; v
with small coprime coefficients.



2008 Bernstein:

Tweak parameters

in the same algorithm

to find all divisors of n that are

linear combinations of u; v
with small coprime coefficients.

Apply to the Goppa situation:

analogous algorithm finds all

divisors of
Q

i(x� ai) that are

linear combinations of �0; �1
with small coprime coefficients.

Compared to Patterson,

pushes allowable weight of m
up to � t + t2=n.



New algorithm assumes that �1
is coprime to

Q
i(x� ai).

Easy to achieve by adding

a small multiple of �0 to �1.
: : : unless n = q and

�1=�0 is a permutation function.

Can this happen to Patterson?

I don’t know any examples.

Weil forces rather large degree:

can show that the curve

�0(x)�1(y)� �1(x)�0(y)

x� y = 0

has no points over Fq.



Many other current topics

in code-based cryptography.

e.g. 2009 Misoczki–Barreto:

Hide quasi-dyadic Goppa code

as quasi-dyadic public key.

Key length only b1+o(1).

Encryption time blg 3+o(1).

Decryption time blg 3+o(1).

2009 Bernstein: easy tweak

to Misoczki–Barreto algorithms,

reducing time to b1+o(1).


