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Warning: Complexity estimates

in this talk are approximate;

small factors are suppressed.



What is the fastest algorithm

that, given s, finds

collision in x 7! MD5(s; x)?

i.e. finds (x; x0) with x 6= x0
and MD5(s; x) = MD5(s; x0)?
Now have a very fast algorithm,

leading to many attacks.

MD5 is thoroughly broken.
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Surprised by the collisions?

Fact: By 1996, a few years

after the introduction of MD5,

Preneel, Dobbertin, et al. were

calling for MD5 to be scrapped.



What is the fastest algorithm

that, given s, finds

collision in x 7! SHA-256(s; x)?

SHA-256 is an NSA design.

Seems much better than MD5,

but confidence isn’t high.

Ongoing SHA-3 competition

will lead to much higher

public confidence in SHA-3.

But should SHA-3 produce

256-bit output? 512-bit output?

How do quantum computers

affect the answer?



Guessing a collision

For any classical circuit H
producing b-bit output:

Generate random

(b+ 1)-bit strings x; x0.
Chance � 1=2b+1 that

(x; x0) is a collision in H,

i.e., x 6= x0 and H(x) = H(x0).
Otherwise try again.

Good chance of success

within 2b evaluations of H.



1996 Grover, 1997 Grover:

Take classical circuit F
using f bit operations

to produce 1-bit output

from b-bit input.

Explicit construction of

quantum circuit G(F )

using 2b=2f qubit operations

to compute a root of F
with high probability

if F has a unique root.



1996 Boyer–Brassard–Høyer–

Tapp, generalizing Grover:

2(b�u)=2f qubit operations

to find some root of F
with high probability

if there are � 2u roots.

Can easily use for collisions:

Given classical circuit H
using h bit operations,

define F (x; x0) as 0

iff (x; x0) is a collision in H.

Obtain some collision

with high probability

using 2b=2h qubit operations.



Table lookups

Another classical approach:

Generate many random inputs

x1; x2; : : : ; xM ; e.g. M = 2b=2.
Compute and sort M pairs

(H(x1); x1), (H(x2); x2), : : : ,
(H(xM); xM) in lex order.

Generate many random inputs

y1; y2; : : : ; yN ; e.g. N = 2b=2.
After generating yj ,
check for H(yj) in sorted list.



Same effect as searching

all MN pairs (xi; yj).
For M = N = 2b=2,
good chance of success.

Only 2b=2 evaluations of H.

Define F (y) as 0 iff

there is a collision among

(x1; y); (x2; y); : : : ; (xM ; y).
This algorithm is finding

root of F by classical search.

1998 Brassard–Høyer–Tapp:

Instead use quantum search;

e.g., 2b=3h qubit operations

if M = 2b=3.



2003 Grover–Rudolph,

“How significant are the known

collision and element distinctness

quantum algorithms?”:

Brassard–Høyer–Tapp algorithm

uses � 2b=3 qubits!

With such a huge machine,

can simply run 2b=3
parallel quantum searches

for collisions (x; x0).
High probability of success

within time 2b=3h.



What if our quantum circuit

has only 2b=5 qubits?

Again Grover–Rudolph,

mindless parallelism:

high probability of success

within time 22b=5h.

Grover–Rudolph advantage:

no need for communication

across the parallel searches.

Brassard–Høyer–Tapp

needs huge RAM lookups

using quantum indices.

How expensive is this?



Realistic model of computation

developed thirty years ago:

A circuit is a 2-dimensional

mesh of small parallel gates.

Have fast communication

between neighboring gates.

Try to optimize time T
as function of area A.

See, e.g., 1981 Brent–Kung

for definition of model and

proof that optimal circuits

for length-N convolution

have A = N and T = N1=2.



Can model quantum circuits

in the same way to understand

speedups from parallelism,

slowdowns from communication.

Have a 2-dimensional mesh

of small parallel quantum gates.

Try to optimize time T
as function of area A.

(Warning: Model is optimistic

about quantum computation.

Assumes that quantum-computer

scalability problems are

solved without poly slowdowns.)



e.g. area 2b=5:
Have 2b=10 � 2b=10 mesh

of small quantum gates

all operating in parallel.

Size-2b=5 table lookup

using quantum index

can be handled in time 2b=10.

Brassard–Høyer–Tapp

takes total time 2b=2.
Grover–Rudolph is faster

(despite having more “queries”):

total time 22b=5.



Parallel tables

Generate x1; x2; : : : ; xM .

Compute

H(x1); H(x2); : : : ; H(xM).

Generate y1; y2; : : : ; yM .

Compute

H(y1); H(y2); : : : ; H(yM).

Sort all hash outputs

to easily find collisions.

Repeat 2b=M2 times;

high probability of success.



Mesh-sorting algorithms

(e.g., 1987 Schimmler)

sort these hash outputs

in time M1=2 on

classical circuit of area M.

Computation of hash outputs

takes time h;

negligible if M is large.

Total time 2b=M3=2.
e.g. area 2b=5, time 27b=10.



Now Grover-ize this algorithm.

Define F (x1; : : : ; xM ; y1; : : : ; yM)

as 0 iff

some (xi; yj) is a collision in H.

Original algorithm used

mesh-sorting circuit for F
of size M taking time M1=2.
Convert circuit into

quantum mesh-sorting circuit

of size M taking time M1=2.



Find root of F using

2b=2=M evaluations of F
on quantum superpositions.

Total time 2b=2=M1=2.
e.g. area 2b=5, time 22b=5.
Would beat Grover–Rudolph

in a three-dimensional model

of parallel quantum computation,

or in a naive parallel model

without communication delays.



Faster; maybe optimal?

Do better by iterating H.

Choose a (b+ 1)-bit string x0.

Compute b-bit string H(x0);

(b+ 1)-bit string x1 = �(H(x0))

where � is a padding function;

b-bit string H(x1);

(b+ 1)-bit string x2 = �(H(x1));

b-bit string H(x2); etc.

Proving time estimates here

needs good � randomization,

but experiments show simple �
working for every interesting H.



After 2b=2 steps, expect

to find a “distinguished point”:

a string xi
whose first b=2 bits are all 0.

Choose another string y0,

iterate in the same way

until a distinguished point.

2b pairs (xi; yj),
so expect some collision.

If there is a collision

then the distinguished points

are the same. Seeing this

quickly reveals the collision.



More generally, redefine

“distinguished point” as

having b=2� dlgMe bits 0.

Build M parallel iterating units

from M different strings.

Expect time 2b=2=M
to find M distinguished points.

Good chance of collision.

Easily find collision by

sorting distinguished points.



Summary:

area M, conj. time 2b=2=M.

e.g. area 2b=5, conj. time 23b=10.

Analogous quantum circuit:

area M, conj. time 2b=2=M.

e.g. area 2b=5, conj. time 23b=10.

Quantum-search speedup

matches iteration speedup!

Compare to Grover–Rudolph:

area 2b=5, time 22b=5.
Or Brassard–Høyer–Tapp:

area 2b=5, time 2b=2.



Concretely: b = 500.

Brassard–Høyer–Tapp, quantum:

area 2100, time 2250.

Grover–Rudolph, quantum:

area 2100, time 2200.

Iteration, quantum or classical:

area 2100, conj. time 2150.

T = 2b=2=A is optimal

for generic classical algorithms.

Conjecture: also for quantum.



Naive free-communication model:

Brassard–Høyer–Tapp, quantum:

area 2100, time 2200.

Grover–Rudolph, quantum:

area 2100, time 2200.

Parallel tables (new), quantum:

area 2100, time 2150.

Iteration, quantum or classical:

area 2100, conj. time 2150.



Important notes:

1. Optimal quantum computers

seem to be classical computers!

Clear quantum impact upon

factorization, preimages, et al.

but not upon collisions.
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2. This algorithm isn’t new.

M = 1: 1975 Pollard.

General case: famous

1994 van Oorschot–Wiener

paper, four years before

1998 Brassard–Høyer–Tapp.


