
Small high-security

encryption, authentication,

and hashing

D. J. Bernstein

University of Illinois at Chicago



Main goals of cryptography

Alice and Bob are communicating.

Eve is eavesdropping.

Alice and Bob have several

standard security goals:

Confidentiality despite espionage.

Maybe Eve wants to acquire data.

Integrity despite corruption.

Maybe Eve wants to change data.

Availability despite sabotage.

Maybe Eve wants to destroy data.



The cold-boot example:

Alice is your laptop’s CPU.

Bob is also your laptop’s CPU.

Alice sends messages to Bob

by copying data to DRAM,

copying data to disk, etc.

Eve steals your laptop,

freezes the DRAM,

installs the DRAM and disk

inside Eve’s computer,

reads the entire DRAM,

and reads the entire disk.

Eve now has all your laptop data,

violating confidentiality.



secure-medicine.org example:

Alice is an M7278 pacemaker

sitting next to a patient’s heart.

Bob is a pacemaker control unit

communicating by 175 kHz radio.

By imitating Bob, Eve can

� verify Alice’s presence,

� see patient’s name,

� see heart-stability history,



secure-medicine.org example:

Alice is an M7278 pacemaker

sitting next to a patient’s heart.

Bob is a pacemaker control unit

communicating by 175 kHz radio.

By imitating Bob, Eve can

� verify Alice’s presence,

� see patient’s name,

� see heart-stability history,

� disable Alice’s defibrillation, or

� tell Alice to give a 1.0J 138V

shock to the patient’s heart.



The cryptographic solution:

Alice scrambles messages to Bob.

Bob unscrambles them.

Same for Bob!Alice messages.

Eve isn’t told the secret

scrambling/unscrambling methods

used by Alice and Bob.

Alice and Bob hope that

Eve cannot understand what

the scrambled messages mean,

and cannot forge a message

that survives the unscrambling.



Publicly designed ciphers

Typical scrambling method

is a public cipher using

a shared secret key.

Example: Alice and Bob

use the “AES” cipher

with a secret 128-bit key.

AES is a public standard.

The only secret is the key.

Alice+Bob choose a random key.

How do Alice and Bob share

this secret key? See the next talk.



Cryptographic research literature

includes hundreds of papers

analyzing various cipher proposals.

These papers have shown that

many proposals are unsafe:

Eve can unscramble messages

or forge scrambled messages.

Designers have to watch out

for “differential attacks”

and “slide attacks” and more.

But the research community

has built confidence in

the security of some ciphers.



Why do we publish ciphers?

Why not use secret ciphers?

Several reasons:

1. Protecting a short secret key

is easier than protecting a secret

scrambling algorithm.

2. Sharing a short secret key

is easier than sharing a secret

scrambling algorithm.

3. If there are many users

then one of them is likely

to leak the cipher to Eve.

4. Cipher publication for review

helps us eliminate bad ciphers.



1997: United States NIST

called for proposals of an

Advanced Encryption Standard.

1998: 15 proposals were

submitted from around the world.

Several of them were broken.

1999: NIST selected 5 finalists.

2000: NIST selected “Rijndael”

as AES because it was fast.



2004: eSTREAM project

called for stream ciphers

providing higher throughput

or smaller size than AES.

2005: 34 proposals were

submitted from around the world.

Some of them were broken.

2006: Second round, 28 ciphers.

2007: Third round, 16 ciphers.

2008: eSTREAM selected

a final portfolio of 4 “software”

ciphers and 4 low-security

“hardware” ciphers.

1 “hardware” cipher was broken.



2007: United States NIST

called for SHA-3 proposals.

2008: 64 proposals were

submitted from around the world.

Many of them were broken.

2009: NIST selected 14 proposals

for the second round.

2010: NIST is expected to select

5 finalists.

2012?: NIST will select SHA-3.



And now the bad news

It is extremely unusual

for a cryptographic designer

to be an expert in

attack methods

and software efficiency

and hardware efficiency.

Some cipher proposals

are from efficiency experts,

but most of these proposals

are quickly broken.

Example: Intel’s Vortex.



Most surviving proposals

are from attack experts.

Most of these proposals are

quite inefficient in software

and even worse in hardware.

Example: Rivest’s MD6.

Huge number of gates,

huge power consumption,

huge latency, etc.

Occasionally a design team

has expertise in attacks and

in software efficiency, but

hardware efficiency is still bad.

Example: HC-128.



Occasionally a design team

has expertise in attacks

and in hardware efficiency,

but something always goes wrong.

The #2 AES candidate, Serpent,

was very fast in hardware,

but slow software performance

prevented standardization.

New generation of “lightweight”

ciphers (mCrypton, DESL,

PRESENT, KATAN, KTANTAN)

are even smaller in hardware

and sometimes fast in software,

but have a low security level.



How to authenticate data

Alice hashes a message m,

obtaining an h-bit hash H(m).

Alice encrypts the hash,

obtaining a = E(H(m)).

Alice sends m;a.
Maybe Eve changes m;a
to a forgery m0; a0.
Bob discards m0; a0
if a0 6= E(H(m0)).
Random-guessing attack:

Eve changes m to random m0;
chance 1=2h of H(m) = H(m0).
Are there more effective attacks?



Replay attack:

Eve records m;a from Alice

and later sends it again.

Always works: a = E(H(m)),

so Bob accepts the replay.

Eve is violating integrity

of the sequence of messages

received by Bob.

Fix: Alice sends

n;m;E(H(n;m))

where n is a counter.

Bob remembers largest n,

rejects any n0 � n.



What if Alice doesn’t have

storage for a counter?

One solution:

Bob stores the counter n,

sends n;E(n) to Alice.

Alice checks n;E(n),

sends n;m;E(H(n;m)) to Bob.

Another solution:

Bob sends a random n.

Need many bits in n
to avoid accidental collisions

and to avoid malicious collisions.



How does H work?

One traditional approach:

H is SHA-1 or SHA-256 or

another public hash function.

Another traditional approach:

H is, e.g., AES-128-CBC

using a secret key k.
H(n;m1;m2) =

AESk(AESk(n)�m1)�m2.

Much better approach: There are

smaller, faster functions H
with strong security guarantees.



The basic idea:

Hr(m1;m2;m3) =

(((r �m1)r �m2)r �m3)r
where r is a secret 128-bit key

and (� � �)r is multiplication

by r in the field GF(2128).

For any cipher E,

the authenticator a = Ek(n) �
(((r �m1)r �m2)r �m3)r
is almost as secure as E.

Security gap is only N=2128

if Alice receives N blocks.



Multiplier structure allows a

tremendous variety of tradeoffs.

Can make a tiny multiplier,

or a big high-throughput

pipelined multiplier,

or something in between.

Can use subfields etc.;

many fancy optimizations.

Can do even better:

Recent research has found

safe authenticators using

1 multiplication in GF(2128)

for every 2 blocks of m.



How to encrypt data

Need a strong cipher E.

Input to E: secret key k,
message number n.

Output: 128 bits Ek(n) used

for authenticator Ek(n)�Hr(m).

Can design E to produce

longer stream of output

for dynamic generation of r
or for authenticated encryption:

Ek(n)� (Hr(m);m).

e.g. 512-bit output of E for

128-bit H, 128-bit r, 256-bit m.



How long should k be?

Typical assessment:

“The recent RSA-768 attack

spent � 267 CPU cycles.

80-bit k is big enough.”



How long should k be?

Typical assessment:

“The recent RSA-768 attack

spent � 267 CPU cycles.

80-bit k is big enough.”

Two big reasons to disagree:

1. Serious attackers have

many more computers—

and sometimes build ASICs!

280 is feasible today.

2. Attacking 230 targets Ek(n)

is 230 times more efficient

than attacking one target.



Typical E construction:

Pad n with constants,

obtaining a b-bit block

x[0]; : : : ; x[b� 1].

Xor k into block.

Apply many bit operations:

x[3] ^= ~(x[11]&x[28])

etc.

Xor k into block.

Apply many bit operations.

Xor k into block.

Output resulting block.



e.g. My Salsa20 stream cipher

expands n to a 512-bit block;

adds 256-bit k into block;

applies many word operations;

adds the key again.

To generate longer outputs:

first block uses (n; 0);

second block uses (n; 1);

third block uses (n; 2); etc.

Included in eSTREAM’s final

“software” portfolio.



Some things Salsa20 does well:

Operations are very simple.

Most ciphers have bigger

operations such as AES S-box.

Structure is parallel+SIMD,

allowing wide range of tradeoffs.

Most ciphers are more “random”:

can’t do small implementations.

Very few uses of the key k.
Can even burn k into chip.

Most ciphers need extra

flip-flops for “expanded key”

alongside flip-flops for block.



Recent RFID implementation:

180nm process, 255�m�530�m,

3468 cells, 100kHz, 202 cycles,

1.8V, 2.82 �W (simulated).

Some directions for improvement

from cipher designer’s perspective:

Can eliminate word additions

in favor of ANDs or NANDs.

Can improve diffusion,

achieving security in fewer rounds.

Can replace counters by LFSRs.

Can reduce block size somewhat

without compromising security.



Typical DRAM controller

reads/writes 64-byte lines.

Why not encrypt with Salsa20?

DRAM controller generates

random key on start-up,

uses physical address as n.

Could even use ECC DRAM

for free authentication.


