
Type-II optimal polynomial bases

D. J. Bernstein

University of Illinois at Chicago

Joint work with:

Tanja Lange

Technische Universiteit Eindhoven

Bigger project: “Breaking

ECC2K-130”. Daniel V. Bailey,

Lejla Batina, Daniel J. Bernstein,

Peter Birkner, Joppe W. Bos,

Hsieh-Chung Chen, Chen-Mou

Cheng, Gauthier van Damme,

Giacomo de Meulenaer, Luis

Julian Dominguez Perez, Junfeng

Fan, Tim Güneysu, Frank

Gürkaynak, Thorsten Kleinjung,

Tanja Lange, Nele Mentens,

Ruben Niederhagen, Christof

Paar, Francesco Regazzoni, Peter

Schwabe, Leif Uhsadel, Anthony

Van Herrewege, Bo-Yin Yang.

The target: ECC2K-130

1997: Certicom announces several

elliptic-curve challenges.

“The Challenge is to compute the

ECC private keys from the given

list of ECC public keys

and associated system parameters.

This is the type of problem

facing an adversary who

wishes to completely defeat

an elliptic curve cryptosystem.”

Goals: help users select key sizes;

compare random and Koblitz;

compare F2m and Fp; etc.

1997: ECCp-79 broken by

Baisley and Harley.

1997: ECC2-79 broken by

Harley et al.

1998: ECCp-89, ECC2-89 broken

by Harley et al.

1998: ECCp-97 broken by Harley

et al. (1288 computers).

1998: ECC2K-95 broken by Harley

et al. (200 computers).

1999: ECC2-97 broken by Harley

et al. (740 computers).

2000: ECC2K-108 broken by Harley

et al. (9500 computers).

Certicom: “The 109-bit Level I

challenges are feasible using a

very large network of computers.

The 131-bit Level I challenges

are expected to be infeasible

against realistic software and

hardware attacks, unless of

course, a new algorithm for the

ECDLP is discovered.”

2002: ECCp-109 broken by Monico

et al. (10000 computers).

2004: ECC2-109 broken by Monico

et al. (2600 computers).

Next challenge: ECC2K-130.

The attacker: ECRYPT

European Union has funded

ECRYPT I network (2004–2008),

ECRYPT II network (2008–2012).

ECRYPT II: KU Leuven; ENS;

EPFL; RU Bochum; RHUL; TU

Eindhoven; TU Graz; U Bristol;

U Salerno; France Télécom; IBM

Research; 22 adjoint members.

Work is handled by “virtual labs”:

� SymLab: secret-key crypto;

� MAYA: public-key crypto;

� VAMPIRE: implementations.

Working groups in VAMPIRE:

� VAM1: “Efficient

Implementation of

Security Systems”.

� VAM2: “Physical Security”.

2009.02: VAMPIRE (VAM1)

sets its sights on ECC2K-130.

Exactly how difficult

is breaking ECC2K-130?

Also ECC2-131 etc.

Sensible topic for implementors.

Optimizing ECC attacks

isn’t far from optimizing ECC.

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

This is a computation that

Certicom called “infeasible”?

With our latest implementations,

ECC2K-130 is breakable

in two years on average by

� 1595 Phenom II x4 955 CPUs,

� or 1231 Playstation 3s,

� or 631 GTX 295 cards,

� or 308 XC3S5000 FPGAs,

� or any combination thereof.

This is a computation that

Certicom called “infeasible”?

Certicom has now backpedaled,

saying that ECC2K-130

“may be within reach”.

ECC2K-130 optimization

“Breaking ECC2K-130” combines

many levels of optimization.

This talk focuses on

arithmetic in the finite field

F2131 inside ECC2K-130.

ECC2K-130 optimization

“Breaking ECC2K-130” combines

many levels of optimization.

This talk focuses on

arithmetic in the finite field

F2131 inside ECC2K-130.

Many implementation decisions,

platform-specific optimizations.

This talk focuses on a

simple but useful cost metric,

namely # bit operations:

i.e., #ANDs + #XORs.

Define M(n) as minimum

bit operations for

multiplying n-bit polys.

e.g. M(131) � 34061 from

schoolbook multiplication:

1312 ANDs + 1302 XORs.

Define M(n) as minimum

bit operations for

multiplying n-bit polys.

e.g. M(131) � 34061 from

schoolbook multiplication:

1312 ANDs + 1302 XORs.

Much lower costs are known.

Optimizations: Karatsuba

(not “Karatsuba–Ofman”:

K–O paper credits Karatsuba);

refined Karatsuba; Toom; etc.

Current record (CRYPTO 2009):

M(131) � 11961.

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

Response: Optimizing

bit operations is very close to

optimizing the throughput

of unrolled, pipelined hardware.

See, e.g., ECC2K-130 FPGA

paper to appear at FPL 2010.

“Your metric is too simple!

Hardware has area-time tradeoffs!

Software does not work on bits!”

Response: Optimizing

bit operations is very close to

optimizing the throughput

of unrolled, pipelined hardware.

See, e.g., ECC2K-130 FPGA

paper to appear at FPL 2010.

Also very close to optimizing

the speed of software using

vectorized bit operations.

See, e.g., ECC2K-130 Cell

paper at AFRICACRYPT 2010.

All of the implementations of the

ECC2K-130 attack started with

the standard pentanomial basis

1; z; z2; : : : ; z130 of F2131 =

F2[z]=(z131 + z13 + z2 + z + 1).

Cost M(131) + 455

for multiplication.

Cost 203 for squaring.

Our final attack iteration has

5 mults, 21 squarings,

1 normal-basis Hamming weight.

Question at start of project:

Work entirely in normal basis?

Critical issue: mult speed.

Type-I normal basis of F2n

is a permutation of

�; �2; : : : ; �n

in F2[�]=(�n + � � � + � + 1).

Cost M(n) to multiply,

obtaining coefficients of

�2; �3; : : : ; �2n.

Cost 2n� 2 to reduce

�2; �3; : : : ; �2n

to �; �2; : : : ; �n.

Alternative (1989 Itoh–Tsujii),

slightly faster when n is large:

redundant 1; �; : : : ; �n;

cost M(n + 1) + n.

But F2131 doesn’t have

a type-I normal basis.

F2131 has a type-II

normal basis � + ��1,

�2 + ��2, �4 + ��4,

: : : , �2130
+ ��2130

where

� is a primitive 263rd root of 1.

1995 Gao–von zur Gathen–

Panario: Can multiply on

type-II normal basis of F2n

by multiplying in

F2[�]=(�2n + � � � + 1).

Cost > 2M(n).

2001 Bolotov–Gashkov:

Can quickly convert

from type-II normal basis

c; c2; c4; : : : ; c2n�1

to “standard basis”

1; c; c2; : : : ; cn�1

where c = � + ��1.

Cost � (n=2) lgn + 3n.

e.g. � 853 for n = 131.

Same cost for inverse.

(Analysis is too pessimistic;

actual cost is lower.)

Bolotov–Gashkov multiply

in this “standard basis”

with a poly mult, cost M(n),

and a reduction modulo

the minimal polynomial of c.

e.g. c131 + c130 + c128 + c124 +

c123 + c122 + c120 + c115 + c114 +

c112 + c99 + c98 + c96 + c67 + c66 +

c64 + c3 + c2 + 1 = 0 for n = 131.

Bolotov–Gashkov reduction

uses sparsity; cost � 2340.

Overall cost � M(131) + 4899

for type-II normal-basis mult.

Still too slow to be useful.

2007 Shokrollahi

(first published in Ph.D. thesis,

then in WAIFI 2007 paper

by von zur Gathen, Shokrollahi,

and Shokrollahi):

Convert from type-II normal basis

to redundant 1; c; c2; : : : ; cn.

Multiply polynomials, producing

redundant 1; c; c2; : : : ; c2n.

Convert to redundant

1, � + ��1, �2 + ��2,

�3 + ��3, : : : �2n + ��2n.

Use �2n+1 = 1

to eliminate redundancy.

For n = 131:

Shokrollahi’s analysis says

� M(132) + 3462.

Our analysis of Shokrollahi’s

algorithm says M(132) + 1559.

Easy speedup: M(131) + 1559.

5 mults, other iteration overhead:

5M(131) + 12249.

Compare to pentanomial basis:

5M(131) + 14372.

Do even better by mixing

permuted type-II optimal normal

basis � + ��1, �2 + ��2,

�3 + ��3, : : : , �n + ��n

with “type-II optimal polynomial

basis” � + ��1, (� + ��1)2,

(� + ��1)3, : : : , (� + ��1)n.

Use normal basis for outputs

that will be provided to squaring,

poly basis for outputs

that will be provided to mult.

Use a new reduction algorithm

for poly-basis output.

See paper for details.

Current iteration cost:

5M(131) + 10305.

Practical impact:

All of the ECC2K-130

implementations have upgraded

from pentanomial basis

to type-II bases, saving time.

Ongoing project:

We are working on

fast high-security ECC software

using big Koblitz curves;

much bigger than ECC2K-130!

