Jet list decoding

D. J. BernsteinUniversity of Illinois at Chicago

Thanks to:

NSF 1018836 NIST 60NANB10D263

No thanks to:

IEEE violating IEEE policies and forcing authors to take papers offline; see cr.yp.to/writing/ieee.html

Decoding

The $\leq w$ -error decoding problem for a linear code $C \subseteq \mathbf{F}_{q}^{n}$:

- Output: $c \in C$.
- Input: $v \in \mathbf{F}_q^n$ with $|v-c| \leq w$.

Note that output is unique if $w < \frac{1}{2} \min\{|c| : c \in C - \{0\}\}.$

Notation:

$$|v| = \#\{i : v_i \neq 0\}$$
 $=$ Hamming weight of v ;
e.g. $|v - c| = \#\{i : v_i \neq c_i\}$
 $=$ Hamming distance from v to c .

Reed-Solomon decoding

Choose integer $t \geq 0$, integer $n \geq t$, prime power $q \geq n$, distinct $a_1, \ldots, a_n \in \mathbf{F}_q$.

Define $C \subseteq \mathbf{F}_q^n$ as the code $\{\operatorname{ev} f: f \in \mathbf{F}_q[x], \deg f < n-t\}$ where $\operatorname{ev} f = (f(a_1), \ldots, f(a_n)).$

 $\min\{|c|:c\in\mathcal{C}-\{0\}\}=t+1.$ Exception: ∞ if t=n.

1960 Peterson in some cases, 1961 Gorenstein–Zierler in more, 1965 Forney in general: $\leq \lfloor t/2 \rfloor$ -error decoding for C takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

Big research direction #1: Decode faster.

1968 Berlekamp:

 $\leq \lfloor t/2 \rfloor$ -error decoding for C costs O(nt) operations in \mathbf{F}_q plus root-finding in \mathbf{F}_q . Time $n^{2+o(1)}$ for typical t,q.

1976 Justesen, independently 1977 Sarwate: Faster algorithm for large n, $n(\lg n)^{2+o(1)}$ instead of O(nt). Time $n^{1+o(1)}$ for typical t,q.

Extensive literature on further speedups.

Decoding more codes

Big research direction #2: Modify C to expand and improve tradeoffs between q, n, #C, w.

e.g. Replace $C \subseteq \mathbf{F}_q^n$, $q = 2^m$, with \mathbf{F}_2 -subfield subcode $\mathbf{F}_2^n \cap C$. $\#C = q^{n-t} \Rightarrow \#(\mathbf{F}_2^n \cap C) \geq 2^{n-mt}$. Any $\leq w$ -error decoder for C also works for $\mathbf{F}_2^n \cap C$.

Can take $\mathbf{F}_2^n \cap C$ where C is RS, but better to twist carefully. Obtain classical \mathbf{F}_2 Goppa codes decoding twice as many errors.

Better for large n: AG codes.

List decoding

Big research direction #3: Decode more errors for same C.

Maybe output c isn't unique. Decoding problem asks for some c with $|v-c| \leq w$. List-decoding problem asks for all c with $|v-c| \leq w$.

Trivial approach: Brute force. e.g. guess $w - \lfloor t/2 \rfloor$ errors and use any $\leq \lfloor t/2 \rfloor$ -error decoder. (For list decoding, use a covering set of guesses.) Very slow for large $w - \lfloor t/2 \rfloor$.

Reed-Solomon list decoding

1996 Sudan for smaller w, 1998 Guruswami–Sudan in general: If $w < n - \sqrt{n(n-t-1)}$ then $\leq w$ -error list decoding for $C = \{ \operatorname{ev} f : f \in \mathbf{F}_q[x], \deg f < n-t \}$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

Reed-Solomon list decoding

1996 Sudan for smaller w, 1998 Guruswami–Sudan in general: If $w < n - \sqrt{n(n-t-1)}$ then $\leq w$ -error list decoding for $C = \{ \operatorname{ev} f : f \in \mathbf{F}_q[x], \deg f < n-t \}$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

2001 Koetter-Vardy:

Assume $q=2^m$; write n'=n/2. If $w < n' - \sqrt{n'(n'-t-1)}$ then $\leq w$ -error list decoding for $\mathbf{F}_2^n \cap \mathcal{C}$ takes time $n^{O(1)}$ if $q \in n^{O(1)}$.

$$n - \sqrt{n(n-t-1)} \approx t/2 + t^2/8n$$
.
 $n' - \sqrt{n'(n'-t-1)} \approx t/2 + t^2/4n$.

Guruswami–Sudan cost analysis: $O(n^3\ell^6)$ operations in \mathbf{F}_q where ℓ is an algorithm parameter.

Extensive literature on speedups and adaptations to more codes.

Critical Howgrave-Graham idea, with state-of-the-art subroutines: $n^{1+o(1)}k^{1+o(1)}\ell^{<3}$ where k is another parameter; $k < \ell$.

For Howgrave-Graham analysis see 2010 Cohn–Heninger (which also adapts to AG etc.), 2011 Bernstein "simplelist" (combining with Koetter–Vardy).

What are these parameters k, ℓ ? Obviously critical for speed. Why not take k, ℓ to be small?

Answer: Decreasing k, ℓ forces gap between w and its limit. Almost all list-decoding methods have essentially the same gap.

What are these parameters k, ℓ ? Obviously critical for speed. Why not take k, ℓ to be small?

Answer: Decreasing k, ℓ forces gap between w and its limit. Almost all list-decoding methods have essentially the same gap.

But not all! Much better k, ℓ , w tradeoff in "rational" list-decoding methods: 2007 Wu "New list decoding"; 2008 Bernstein "goppalist"; 2011 Bernstein "jetlist".

Jets

The set of 1-jets over \mathbf{R} is the quotient ring $\mathbf{R}[\epsilon]/\epsilon^2$.

Analogous to the set of complex numbers $\mathbf{C} = \mathbf{R}[i]/(i^2+1)$, but $\epsilon^2 = 0$ while $i^2 = -1$.

Multiplication of jets:

$$(a+b\epsilon)(c+d\epsilon)=ac+(ad+bc)\epsilon$$
.

Typical construction of a jet: differentiable $f: \mathbf{R} \to \mathbf{R}$ induces jet $f(x+\epsilon) = f(x) + f'(x)\epsilon$ for each $x \in \mathbf{R}$. e.g. $\sin(x+\epsilon) = \sin x + (\cos x)\epsilon$.

Recap for late sleepers

50 years ago: Polynomial-time decoding of $\leq \lfloor t/2 \rfloor$ errors in length-n Reed–Solomon code $\{\operatorname{ev} f: f \in \mathbf{F}_q[x], \deg f < n-t\}.$

Big research directions since then:

- 3. Decode more errors.

 Output might not be unique:
 have list of possible codewords.
- 2. Improve choice of code: classical Goppa codes, AG, et al.
- 1. Decode faster.

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$
= $(-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z}$

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$
= $(-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z}$
= $(-4, 4)\mathbf{Z} + (3, 3)\mathbf{Z}$.

Define
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

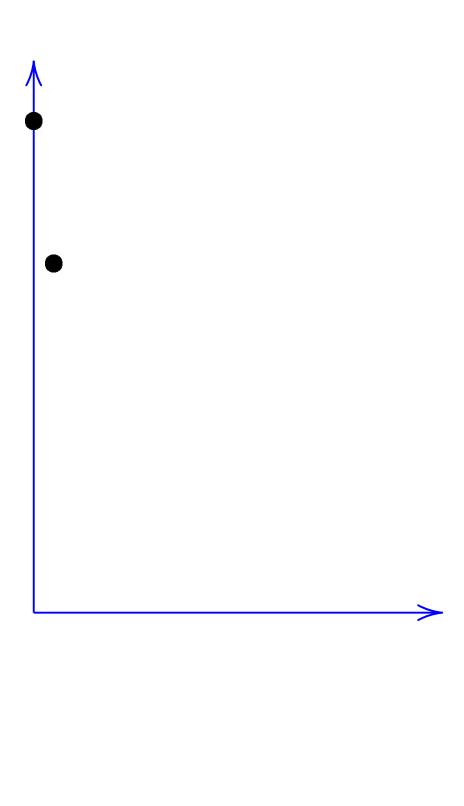
= $\{(b, 24a + 17b) : a, b \in \mathbf{Z}\}.$

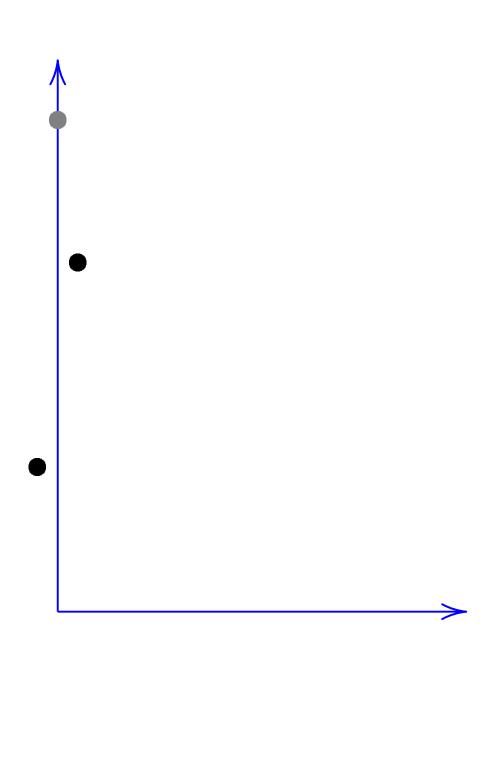
What is the shortest nonzero vector in *L*?

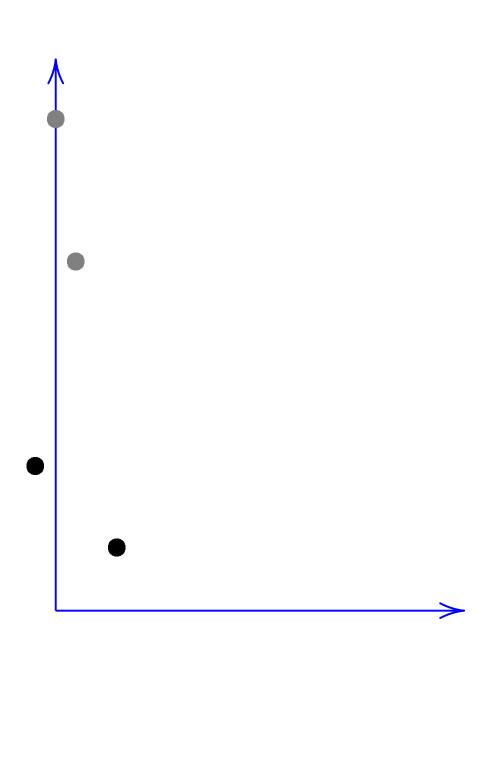
$$L = (0, 24)\mathbf{Z} + (1, 17)\mathbf{Z}$$

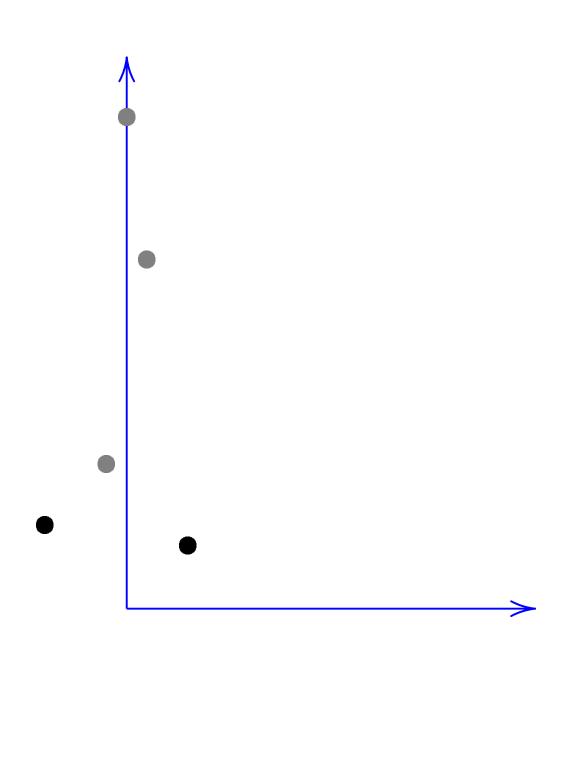
= $(-1, 7)\mathbf{Z} + (1, 17)\mathbf{Z}$
= $(-1, 7)\mathbf{Z} + (3, 3)\mathbf{Z}$
= $(-4, 4)\mathbf{Z} + (3, 3)\mathbf{Z}$.

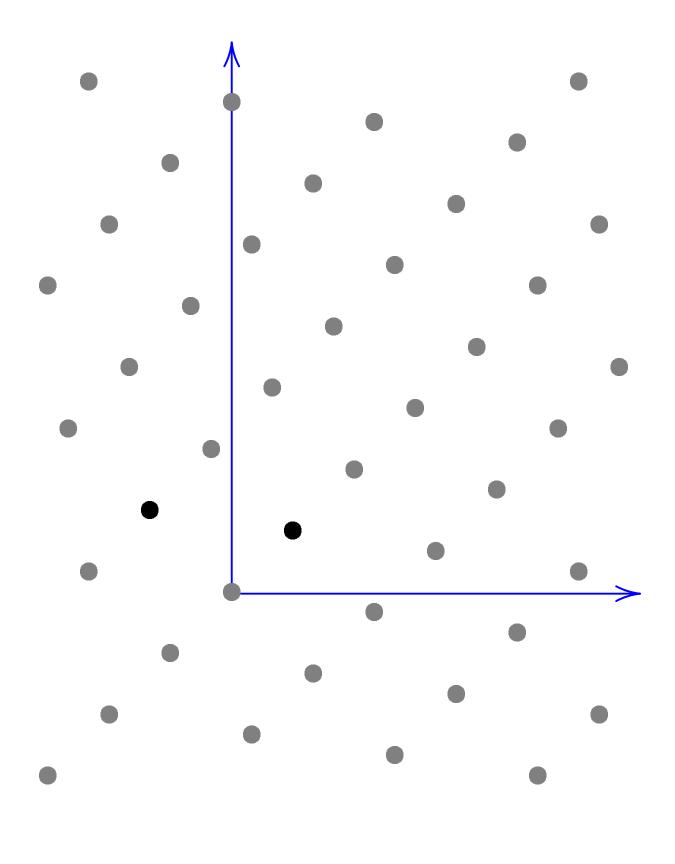
(-4, 4), (3, 3) are orthogonal. Shortest vectors in L are (0, 0), (3, 3), (-3, -3).











Define $L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$.

Define
$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
.

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

Define
$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
.

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$

Define
$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
.

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$
= $(-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}$.

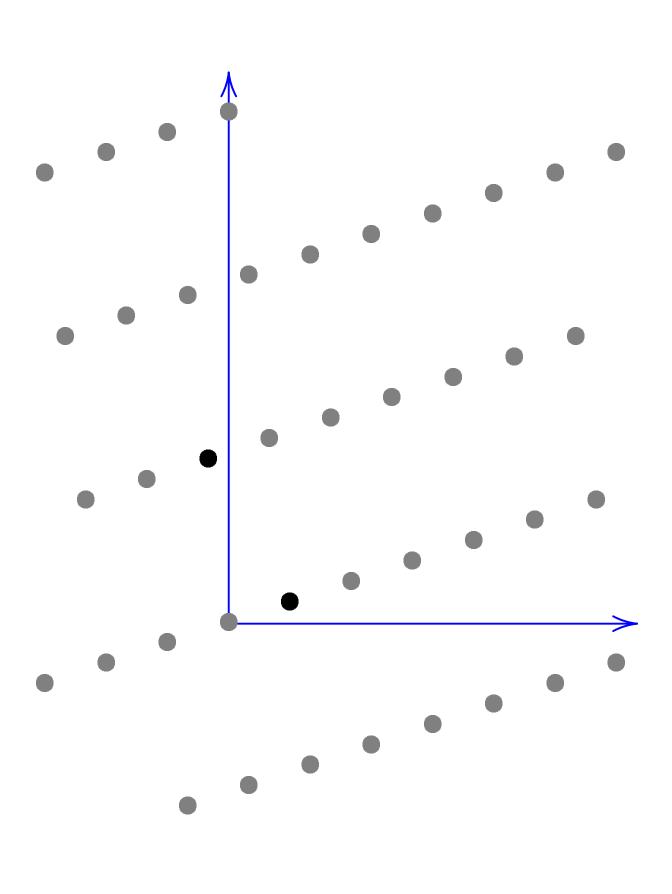
Define
$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$
.

What is the shortest nonzero vector in *L*?

$$L = (0, 25)\mathbf{Z} + (1, 17)\mathbf{Z}$$

= $(-1, 8)\mathbf{Z} + (1, 17)\mathbf{Z}$
= $(-1, 8)\mathbf{Z} + (3, 1)\mathbf{Z}$.

Nearly orthogonal. Shortest vectors in L are (0,0), (3,1), (-3,-1).



Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

$$L = (0, 101000)R + (1, 10011)R$$

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

$$L = (0, 101000)R + (1, 10011)R$$

= $(10, 1110)R + (1, 10011)R$

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

$$L = (0, 101000)R + (1, 10011)R$$

= $(10, 1110)R + (1, 10011)R$
= $(10, 1110)R + (111, 1)R$.

Define $R = \mathbf{F}_2[x]$, $r_0 = (101000)_x = x^5 + x^3 \in R$, $r_1 = (10011)_x = x^4 + x + 1 \in R$, $L = (0, r_0)R + (1, r_1)R$.

What is the shortest nonzero vector in *L*?

$$L = (0, 101000)R + (1, 10011)R$$

= $(10, 1110)R + (1, 10011)R$
= $(10, 1110)R + (111, 1)R$.

(111, 1): shortest nonzero vector. (10, 1110): shortest independent vector.

Degree of $(q, r) \in \mathbf{F}_2[x] \times \mathbf{F}_2[x]$ is defined as $\max\{\deg q, \deg r\}$.

Can use other metrics, or equivalently rescale *L*.

e.g. Define
$$L \subseteq \mathbf{F}_2[\sqrt{x}] \times \mathbf{F}_2[\sqrt{x}]$$
 as $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R$.

Successive generators for L: $(0, 101000\sqrt{x})$, degree 5.5. $(1, 10011\sqrt{x})$, degree 4.5. $(10, 1110\sqrt{x})$, degree 3.5. $(111, 1\sqrt{x})$, degree 2.

Warning: Sometimes shortest independent vector is *after* shortest nonzero vector.

e.g. Define $r_0=101000$, $r_1=10111$, $L=(0,r_0\sqrt{x})R+(1,r_1\sqrt{x})R$.

Successive generators for L: $(0, 101000\sqrt{x})$, degree 5.5. $(1, 10111\sqrt{x})$, degree 4.5. $(10, 110\sqrt{x})$, degree 2.5. $(1101, 11\sqrt{x})$, degree 3.

For any $r_0, r_1 \in R = \mathbf{F}_q[x]$ with $\deg r_0 > \deg r_1$:

Euclid/Stevin computation: Define $r_2 = r_0 \mod r_1$, $r_3 = r_1 \mod r_2$, etc.

Extended: $q_0=0$; $q_1=1$; $q_{i+2}=q_i-\lfloor r_i/r_{i+1} \rfloor q_{i+1}$. Then $q_ir_1\equiv r_i\pmod{r_0}$.

Lattice view: Have $(0, r_0\sqrt{x})R + (1, r_1\sqrt{x})R = (q_i, r_i\sqrt{x})R + (q_{i+1}, r_{i+1}\sqrt{x})R.$

Can continue until $r_{i+1}=0$. $\gcd\{r_0,r_1\}=r_i/\operatorname{leadcoeff} r_i$.

Reducing lattice basis for *L* is a "half gcd" computation, stopping halfway to the gcd.

 $\deg r_i$ decreases; $\deg q_i$ increases; $\deg q_{i+1} + \deg r_i = \deg r_0$.

Say j is minimal with $\deg r_j \sqrt{x} \leq (\deg r_0)/2$. Then $\deg q_j \leq (\deg r_0)/2$ so $\deg(q_j, r_j \sqrt{x}) \leq (\deg r_0)/2$. Shortest nonzero vector.

 $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ has degree $\deg r_0\sqrt{x} - \deg(q_j, r_j\sqrt{x})$ for some $\epsilon \in \{-1, 1\}$. Shortest independent vector.

Proof of "shortest":

Take any $(q, r\sqrt{x})$ in lattice.

$$egin{aligned} (q,r\sqrt{x}) &= u(q_j,r_j\sqrt{x}) \ &+ v(q_{j+\epsilon},r_{j+\epsilon}\sqrt{x}) \end{aligned}$$

for some $u, v \in R$.

$$q_j r_{j+\epsilon} - q_{j+\epsilon} r_j = \pm r_0$$

so $v = \pm (rq_j - qr_j)/r_0$
and $u = \pm (qr_{j+\epsilon} - rq_{j+\epsilon})/r_0$.

If
$$\deg(q, r\sqrt{x})$$
 $< \deg(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$

then $\deg v < 0$ so v = 0; i.e., any vector in lattice shorter than $(q_{j+\epsilon}, r_{j+\epsilon}\sqrt{x})$ is a multiple of $(q_j, r_j\sqrt{x})$.

Classical binary Goppa codes

Parameters determining the code: integers $n \geq 0$, $m \geq 1$, $t \geq 0$; distinct $a_1, \ldots, a_n \in \mathbf{F}_{2^m}$; monic $g \in \mathbf{F}_{2^m}[x]$ of degree t with $g(a_1) \cdots g(a_n) \neq 0$.

The code: Define $\Gamma \subseteq \mathbf{F}_2^n$ as set of (c_1, \ldots, c_n) with $\sum_i c_i/(x-a_i) = 0$ in $\mathbf{F}_{2^m}[x]/g$.

 $\lg \#\Gamma \geq n-mt.$ $\min\{|c|:c\in\Gamma-\{0\}\}\geq t+1.$ Better bounds in the BCH case $g=x^t$ and in many other cases.

Say we receive v=c+e. Define D, $E \in \mathbf{F}_{2^m}[x]$ by $D=\prod_{i:e_i \neq 0}(x-a_i)$ and $E=\sum_i De_i/(x-a_i)$.

Say we receive v = c + e.

Define D, $E \in \mathbf{F}_{2^m}[x]$ by

$$D = \prod_{i:e_i
eq 0} (x - a_i)$$
 and

$$E = \sum_{i} De_{i}/(x-a_{i}).$$

Lift $\sum_i v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with $\deg s < t$.

Find shortest nonzero

$$(q_j, r_j \sqrt{x})$$
 in the lattice $L =$

$$(0, g\sqrt{x})\mathbf{F}_{2m}[x] + (1, s\sqrt{x})\mathbf{F}_{2m}[x].$$

Say we receive v = c + e.

Define D, $E \in \mathbf{F}_{2^m}[x]$ by

$$D = \prod_{i:e_i
eq 0} (x - a_i)$$
 and

$$E = \sum_{i} De_{i}/(x-a_{i}).$$

Lift $\sum_i v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with $\deg s < t$.

Find shortest nonzero

$$(q_j, r_j \sqrt{x})$$
 in the lattice $L = (0, g\sqrt{x}) \mathbf{F}_{2m}[x] + (1, s\sqrt{x}) \mathbf{F}_{2m}[x]$.

Fact: If |e| < t/2

then $E/D=r_j/q_j$ so

D is monic denominator of r_j/q_j .

Say we receive v = c + e.

Define D, $E \in \mathbf{F}_{2^m}[x]$ by

$$D = \prod_{i:e_i
eq 0} (x - a_i)$$
 and

$$E = \sum_{i} De_{i}/(x-a_{i}).$$

Lift $\sum_i v_i/(x-a_i)$ from $\mathbf{F}_{2^m}[x]/g$ to $s \in \mathbf{F}_{2^m}[x]$ with $\deg s < t$.

Find shortest nonzero

$$(q_j, r_j \sqrt{x})$$
 in the lattice $L = (0, g\sqrt{x}) \mathbf{F}_{2m}[x] + (1, s\sqrt{x}) \mathbf{F}_{2m}[x]$.

Fact: If |e| < t/2

then $E/D=r_j/q_j$ so

D is monic denominator of r_j/q_j .

$$e_i = 0$$
 if $D(a_i) \neq 0$.

$$e_i = E(a_i)/D'(a_i) \text{ if } D(a_i) = 0.$$

Why does this work?

$$\sum_i e_i/(x-a_i)=E/D$$
 and $\sum_i c_i/(x-a_i)=0$ in $\mathbf{F}_{2m}[x]/g$ so $s=E/D$ in $\mathbf{F}_{2m}[x]/g$ so $(D,E\sqrt{x})\in\mathcal{L}.$

Why does this work?

$$\sum_i e_i/(x-a_i)=E/D$$
 and $\sum_i c_i/(x-a_i)=0$ in $\mathbf{F}_{2m}[x]/g$ so $s=E/D$ in $\mathbf{F}_{2m}[x]/g$ so $(D,E\sqrt{x})\in\mathcal{L}.$

 $(D, E\sqrt{x})$ is a short vector: $\deg(D, E\sqrt{x}) \leq |e| \leq t/2$ $< t+1/2 - \deg(q_j, r_j\sqrt{x}).$

Why does this work?

$$\sum_i e_i/(x-a_i)=E/D$$
 and $\sum_i c_i/(x-a_i)=0$ in $\mathbf{F}_{2m}[x]/g$ so $s=E/D$ in $\mathbf{F}_{2m}[x]/g$ so $(D,E\sqrt{x})\in\mathcal{L}.$

$$(D, E\sqrt{x})$$
 is a short vector: $\deg(D, E\sqrt{x}) \leq |e| \leq t/2$ $< t+1/2 - \deg(q_j, r_j\sqrt{x}).$

Recall "shortest" proof: $(D, E\sqrt{x}) \in (q_j, r_j\sqrt{x}) \mathbf{F}_{2^m}[x],$ so $E/D = r_j/q_j.$ Done!

Euclid decoding: 1975 Sugiyama– Kasahara–Hirasawa–Namekawa.

List decoding for these codes

What if |e| > t/2?

Find shortest nonzero $(D_0, E_0\sqrt{x})$ and independent $(D_1, E_1\sqrt{x})$ in $(0, g\sqrt{x})\mathbf{F}_{2^m}[x] + (1, s\sqrt{x})\mathbf{F}_{2^m}[x]$, with degrees $t/2 - \delta$ and $t/2 + 1/2 + \delta$ for some $\delta \in \{0, 1/2, 1, 3/2, \ldots\}$.

Know that $(D, E\sqrt{x}) = u(D_0, E_0\sqrt{x}) + v(D_1, E_1\sqrt{x});$ $v = \pm (ED_0 - DE_0)/g \in \mathbf{F}_{2^m}[x],$ $u = \pm (DE_1 - ED_1)/g \in \mathbf{F}_{2^m}[x],$ $\deg v \leq |e| - t/2 - 1/2 - \delta,$ $\deg u \leq |e| - t/2 + \delta.$

Critical facts about *D*:

- $ullet D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.
- D divides known

$$N = \prod_i (x - a_i).$$

Critical facts about *D*:

- $D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.
- D divides known $N = \prod_i (x a_i).$

Can use these facts to quickly compute all possible D for surprisingly large |e|.

Critical facts about *D*:

- $ullet D = uD_0 + vD_1$ with known D_0 and D_1 , bounded u and v.
- D divides known $N = \prod_i (x a_i).$

Can use these facts to quickly compute all possible D for surprisingly large |e|.

This is essentially 2007 Wu.

2008 Bernstein: combine with Patterson.

1998 Guruswami–Sudan: same |e| limit but much slower. Algorithm parameters:

"multiplicity" $k \geq 1$; "lattice dimension" $\ell \geq k+1$.

Assume $gcd\{D_1, N\} = 1$. Otherwise add constant multiple of D_0 to D_1 , extending field if necessary; see 2008 Bernstein for analysis.

Lift D_0/D_1 from $\mathbf{F}_{2^m}[x]/N$ to $S \in \mathbf{F}_{2^m}[x]$ with $\deg S < n$. Then $Su + v \in D\mathbf{F}_{2^m}[x]$.

Note that both u and $x^{\theta}v$ have degree $\leq \lfloor |e| - t/2 + \delta \rfloor$ where $\theta = \lfloor t/2 + \delta \rfloor - \lfloor t/2 - 1/2 - \delta \rfloor$.

For k=1: In $\mathbf{F}_{2^m}(x)[y]$ define $G_0=N$, $G_1=S+x^{- heta}y$, $G_2=(S+x^{- heta}y)x^{- heta}y$,

: : ,

$$G_{\ell-1} = (S + x^{-\theta}y)(x^{-\theta}y)^{\ell-2}$$
.

Substituting $y=x^{\theta}v/u$ and multiplying by $u^{\ell-1}$ produces $Nu^{\ell-1}$, $(Su+v)u^{\ell-2},\ldots,Su+v$, all of which are in $D\mathbf{F}_{2^m}[x]$.

 $u^{\ell-1}Q(x^{ heta}v/u)\in D\mathbf{F}_{2^m}[x]$ for any $Q\in G_0\mathbf{F}_{2^m}[x]+\cdots+G_{\ell-1}\mathbf{F}_{2^m}[x].$

View all of these polynomials as coefficient vectors in $\mathbf{F}_{2}m(x)^{\ell}$. $G_{0}, G_{1}, \ldots, G_{\ell-1}$ have determinant $Nx^{-\ell(\ell-1)\theta/2}$, of degree $n-\ell(\ell-1)\theta/2$.

Use ℓ -dim lattice-basis reduction to find short nonzero Q: $\deg Q_i \leq n/\ell - (\ell-1)\theta/2$.

If $|e|>n/\ell+$ $(\ell-1)\lfloor |e|-t/2+\delta-\theta/2\rfloor$ then $\deg Q_i(x^\theta v)^i u^{\ell-1-i}<|e|$ so $\deg u^{\ell-1}Q(x^\theta v/u)<|e|$ so $Q(x^\theta v/u)=0$. Find u,v by finding roots of Q.

For general k: Redefine G_i to obtain multiples of D^k .

$$G_0 = N^k;$$
 $G_1 = (S + x^{-\theta}y)N^{k-1};$
 $G_2 = (S + x^{-\theta}y)^2N^{k-2};$

•

$$G_k = (S + x^{-\theta}y)^k$$
;

•

$$G_{\ell-1} = (S + x^{-\theta}y)^k (x^{-\theta}y)^{\ell-k-1}$$
.

$$\deg Q_i \leq nk(k+1)/2\ell - (\ell-1)\theta/2.$$

If
$$k|e|>nk(k+1)/2\ell+$$
 $(\ell-1)\lfloor|e|-t/2+\delta-\theta/2\rfloor$ then $Q(x^\theta v/u)=0$.

e.g. t = 0.1n, w = 0.051n: smallest parameters are k = 4, $\ell = 80$.

For comparison, Guruswami–Sudan require multiplicity k and lattice dimension ℓ to satisfy $nk(k+1)/2\ell+(\ell-1)(n-t-1)/2 < k(n-|e|).$

e.g. t = 0.1n, w = 0.051n: smallest parameters are k = 75, $\ell = 80$.

Jet list decoding

Recall
$$D = \prod_{i:e_i \neq 0} (x - a_i)$$
 and $E = \sum_i De_i/(x - a_i)$.

$$e_i \in \{0,1\}$$

so $E = \sum_i D/(x-a_i) = D'$.

One consequence:

 $\Gamma_2(g) = \Gamma_2(g^2)$ if g is squarefree. This doubles t, drastically increasing # errors decoded.

But $\Gamma_2(g^2)$ decoders vary in effectiveness and efficiency.

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$.
1975 Patterson: same, faster.

1998 Guruswami-Sudan:

 $pprox t + t^2/2n$ errors.

2007 Wu: same, faster;

the "rational" speedup.

2008 Bernstein: even faster;

"rational" + Patterson.

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$.
1975 Patterson: same, faster.

1998 Guruswami-Sudan:

$$\approx t + t^2/2n$$
 errors.

2007 Wu: same, faster;

the "rational" speedup.

2008 Bernstein: even faster;

"rational" + Patterson.

2001 Koetter-Vardy:

$$pprox t + t^2/n$$
 errors.

Can "rational" algorithms correct $> t + t^2/2n$ errors?

1968 Berlekamp decodes t errors for $\Gamma_2(g^2)$.
1975 Patterson: same, faster.

1998 Guruswami-Sudan:

$$\approx t + t^2/2n$$
 errors.

2007 Wu: same, faster;

the "rational" speedup.

2008 Bernstein: even faster;

"rational" + Patterson.

2001 Koetter-Vardy:

$$pprox t + t^2/n$$
 errors.

Can "rational" algorithms correct $> t + t^2/2n$ errors?

Yes! Jet list decoding.

Works for arbitrary $\Gamma_2(g)$.

Notation: N, D, E, \ldots as before.

D divides N so the jet

$$D(x + \epsilon) = D + \epsilon D' = D + \epsilon E$$

divides $N(x + \epsilon) = N + \epsilon N'$.

$$(D + \epsilon E)(D - \epsilon E)$$
 divides

$$(N + \epsilon N')(D - \epsilon E)$$
 so

 D^2 divides N'D - NE.

$$(D, E) = u(D_0, E_0) + v(D_1, E_1)$$

so
$$N'D - NE =$$

$$v(N'D_1 - NE_1) + u(N'D_0 - NE_0).$$

Lift
$$(N'D_0 - NE_0)/(N'D_1 - NE_1)$$

from $\mathbf{F}_{2^m}[x]/N^2$ to $S \in \mathbf{F}_{2^m}[x]$.

Then
$$Su+v\in D^2\mathbf{F}_{2^m}[x]$$
.

$$G_0 = (N^2)^k;$$
 $G_1 = (S + x^{- heta}y)(N^2)^{k-1};$
 $G_2 = (S + x^{- heta}y)^2(N^2)^{k-2};$
 \vdots

$$G_k = (S + x^{- heta}y)^k$$
;

$$G_{\ell-1} = (S + x^{-\theta}y)^k (x^{-\theta}y)^{\ell-k-1}$$
.

$$u^{\ell-1}Q(x^{ heta}v/u)\in D^{2k}\mathsf{F}_{2^m}[x]$$
 if $Q\in G_0\mathsf{F}_{2^m}[x]+\cdots+G_{\ell-1}\mathsf{F}_{2^m}[x].$

Roots of shortest nonzero Q include $x^{ heta}v/u$ if $2k|e| > nk(k+1)/\ell +$ $(\ell-1)||e|-t/2+\delta-\theta/2|.$ e.g. t=0.1n, w=0.051n: smallest parameters are $k=1,\ \ell=26.$

e.g. t = 0.1n, w = 0.0521n: smallest parameters are k = 4, $\ell = 80$.

Compared to Koetter–Vardy: same limit on w, but much smaller k for each w.

Same achieved by 2007 Wu in one special case, BCH.

Jet list decoding is faster (thanks to Howgrave-Graham) and more general.