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Several motivations:

1. Optimize secret-key crypto

for short messages.

2. Build a PRF/MAC that’s

secure, efficient, simple.

3. Application:

authenticate Internet packets.

4. Application:

defend against hash flooding.

5. Analyze security of

other hash-flooding defenses.

Followup work with Martin Boßlet

pushes this much further.



Today’s focus: hash flooding

July 1998 article

“Designing and attacking

port scan detection tools”

by Solar Designer (Alexander

Peslyak) in Phrack Magazine:

“In scanlogd, I’m using a hash

table to lookup source addresses.

This works very well for the

typical case : : : average lookup

time is better than that of a

binary search. : : :



However, an attacker can

choose her addresses (most

likely spoofed) to cause hash

collisions, effectively replacing

the hash table lookup with a

linear search. Depending on how

many entries we keep, this might

make scanlogd not be able to pick

new packets up in time. : : : I’ve

solved this problem by limiting

the number of hash collisions, and

discarding the oldest entry with

the same hash value when the

limit is reached.



This is acceptable for port scans

(remember, we can’t detect

all scans anyway), but might

not be acceptable for detecting

other attacks. : : : It is probably

worth mentioning that similar

issues also apply to things like

operating system kernels. For

example, hash tables are widely

used there for looking up active

connections, listening ports, etc.

There’re usually other limits

which make these not really

dangerous though, but

more research might be needed.”



December 1999, Bernstein,

dnscache software:

if (++loop > 100) return 0;

/* to protect against

hash flooding */

Discarding cache entries

trivially maintains performance

if attacker floods hash table.

But what about hash tables in

general-purpose programming

languages and libraries?

Can’t throw entries away!



2003 USENIX Security

Symposium, Crosby–Wallach,

“Denial of service via

algorithmic complexity attacks”:

“We present a new class of

low-bandwidth denial of service

attacks : : : if each element

hashes to the same bucket,

the hash table will also

degenerate to a linked list.”

Attack examples:

Perl programming language,

Squid web cache, etc.

No attack on dnscache.



2011 (28C3), Klink–Wälde,

“Efficient denial of service attacks

on web application platforms”;

oCERT advisory 2011–003:

No attack on dnscache,

fixed Perl, fixed Squid;

but still problems in Java, JRuby,

PHP 4, PHP 5, Python 2, Python

3, Rubinius, Ruby, Apache

Geronimo, Apache Tomcat,

Oracle Glassfish, Jetty, Plone,

Rack, V8 Javascript Engine.
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Defending against hash flooding

My favorite solution:

switch from hash tables

to crit-bit trees.

Guaranteed high speed +

extra lookup features such as

“find next entry after x.”

But hash tables

are perceived as being

smaller, faster, simpler

than other data structures.

Can we protect hash tables?



Classic hash table:

` separate linked lists

for some ` 2 f1; 2; 4; 8; 16; : : :g.

Store string s in list #i

where i = H(s) mod `.

With n entries in table,

expect � n=` entries

in each linked list.

Choose ` � n:

expect very short linked lists,

so very fast list operations.

(What if n becomes too big?

Rehash: replace ` by 2`.)
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Basic hash flooding:

attacker provides strings

s1; : : : ; sn with H(s1) mod ` =

� � � = H(sn) mod `.

Then all strings are stored

in the same linked list.

Linked list becomes very slow.

Solution: Replace linked list

by a safe tree structure,

at least if list is big.

But implementors are unhappy:

this solution throws away the

simplicity of hash tables.
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Non-solution:

Use SHA-3 for H.

SHA-3 is collision-resistant!

Why this is bad: H(s) mod `

is not collision-resistant.

` is small: e.g., ` = 220.

No matter how strong H is,

attacker can easily compute

H(s) mod 220 for many s

to find multicollisions.



1977, Carter–Wegman, “Universal

classes of hash functions”: “This

paper gives an input independent

average linear time algorithm for

storage and retrieval on keys. The

algorithm makes a random choice

of hash function from a suitable

class of hash functions.”

2003 Crosby–Wallach:

About 6 cycles/byte on P2 for

H(m1;m2; : : : ;m12) =

m1k1 + m2k2 + � � � + m12k12.

k1; k2; : : : ; k12: random, 20-bit.

This is “provably secure”!



We don’t recommend this.

The security guarantee

assumes that randomness

is independent of inputs.



We don’t recommend this.

The security guarantee

assumes that randomness

is independent of inputs.

Advanced hash flooding:

use, e.g., server timing

to detect hash collisions;

figure out the hash key;

choose inputs accordingly.

2005 Crosby: Maybe trouble for

any function with a short key,

and for m1k1 + m2k2 + � � �.
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Even worse: Some applications

(e.g., any application that

prints table without sorting)

leak more information about H.

Some applications simply print

H(s) mod `, or even H(s).

We recommend choosing H

as a strong PRF. )
Seeing many H values

is of no use in predicting others.

Finding n-collision in H(s) mod `

requires trying � n` � n2 inputs.

Damage is only
p

communication.
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The importance of overhead

Crypto design, 1990s:

Wow, MD5 is really fast;

only about 5 cycles/byte.

Let’s use HMAC-MD5 as a PRF.

Crypto design, 2000s:

Multipliers are even faster;

can reach 1 or 2 cycles/byte.

Poly1305-AES, UMAC-AES, et al.

The hash-table perspective:

These speed advertisements

are only for long inputs,

ignoring huge overheads!



SipRound and SipHash
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This is SipRound. Next page:

SipHash-2-4 applied to 16 bytes.
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Much more in paper:

� Specification: padding etc.

� Discussion of features.

� Statement of security goals.

� Design rationale and credits.

� Preliminary cryptanalysis.

� Benchmarks. e.g. Ivy Bridge:

1:65 cycles/byte + 27 cycles.

Positive SipHash reception: many

third-party implementations;

now used for hash tables in Ruby,

Redis, Rust, OpenDNS, Perl 5.


