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Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.
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