
Making sure

crypto stays insecure

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Making sure

crypto stays insecure

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Making sure

crypto stays insecure

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Making sure

crypto stays insecure

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Terrorist in Hong Kong

prepares to throw deadly weapon

at Chinese government workers.

Image credit: Reuters.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

Drug-dealing cartel “Starbucks”

invades city in Morocco;

begins selling addictive liquid.

Image credit: Wikipedia.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

Pedophile convinces helpless child

to remove most of her clothing;

sexually abuses child in public.

Image credit: Child pornographer.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Criminal organization

calling itself “The Guardian”

sells classified government secrets.

Image credit: The Guardian.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

We have to watch and listen to

everything that people are doing

so that we can catch terrorists,

drug dealers, organized criminals,

pedophiles, murderers, etc.

We try to systematically monitor

and record all Internet traffic.

But what if it’s encrypted?

This talk gives some examples

of how we’ve manipulated

the world’s crypto ecosystem

so that we can understand

almost all of this traffic.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

Other useful strategies,

not covered in this talk:

Manipulate software ecosystem

so that software stays insecure.

Break into computers; access

hundreds of millions of disks,

screens, microphones, cameras.

Add back doors to hardware.

e.g. 2012 U.S. government report

says that Chinese-manufactured

routers provide “Chinese

intelligence services access to

telecommunication networks”.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Some important clarifications

1. “We” doesn’t include me.

I want secure crypto.

2. Their actions violate

fundamental human rights.

3. I don’t know how much

of today’s crypto ecosystem

was deliberately manipulated.

This talk is actually

a thought experiment:

how could an attacker manipulate

the ecosystem for insecurity?

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

Timing attacks

2005 Osvik–Shamir–Tromer:

65ms to steal Linux AES key

used for hard-disk encryption.

Attack process on same CPU

but without privileges.

Almost all AES implementations

use fast lookup tables.

Kernel’s secret AES key

influences table-load addresses,

influencing CPU cache state,

influencing measurable timings

of the attack process.

65ms: compute key from timings.

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2011 Brumley–Tuveri:

minutes to steal another

machine’s OpenSSL ECDSA key.

Secret branch conditions

influence timings.

Most cryptographic software

has many more small-scale

variations in timing:

e.g., memcmp for IPsec MACs.

Many more timing attacks: e.g.

2014 van de Pol–Smart–Yarom

extracted Bitcoin secret keys

from 25 OpenSSL signatures.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Manufacture public denials

that such attacks exist.

Maybe terrorists Alice and Bob

won’t try to stop the attacks.

2001 NIST “Report on the

development of the Advanced

Encryption Standard (AES)”:

“A general defense against

timing attacks is to ensure that

each encryption and decryption

operation runs in the same

amount of time. : : : Table lookup:

not vulnerable to timing attacks.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

2008 RFC 5246 “The Transport

Layer Security (TLS) Protocol,

Version 1.2”: “This leaves a

small timing channel, since MAC

performance depends to some

extent on the size of the data

fragment, but it is not believed to

be large enough to be exploitable,

due to the large block size of

existing MACs and the small size

of the timing signal.”

2013 AlFardan–Paterson “Lucky

Thirteen: breaking the TLS and

DTLS record protocols”: exploit

these timings; steal plaintext.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Some instructions have no data

flow from their inputs to CPU

timings: e.g., logic instructions,

constant-distance shifts, multiply

(on most CPUs), add, subtract.

What if Alice and Bob use crypto

software built solely from these

instructions? Yikes: we won’t

see anything from timings!

Try to scare implementors away

from constant-time software.

e.g. “It will be too slow.”

“It’s too hard to write.”

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Fund variable-time software,

maybe with “countermeasures”

that make the timings difficult

for researchers to analyze

but that are still breakable

with our computer resources.

Continue expressing skepticism

that constant time is needed.

e.g. 2012 Mowery–Keelveedhi–

Shacham “Are AES x86 cache

timing attacks still feasible?”,

unfortunately shredded by 2014

Irazoqui–Inci–Eisenbarth–Sunar

“Wait a minute! A fast,

cross-VM attack on AES”.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

What if terrorists Alice and Bob

use a different cipher for which

constant-time implementations

are simple and fast? Yikes!

Don’t standardize that cipher.

e.g. choose Rijndael as AES,

not higher-security Serpent.

Watch out for any subsequent

standardization efforts.

Discourage use of the cipher.

Pretend that standardization

is a guarantee of security

while anything non-standard

has questionable security.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Padding oracles

1998 Bleichenbacher:

Decrypt SSL RSA ciphertext

by observing server responses

to ≈106 variants of ciphertext.

SSL first inverts RSA,

then checks for “PKCS padding”

(which many forgeries have).

Subsequent processing applies

more serious integrity checks.

Server responses reveal

pattern of PKCS forgeries;

pattern reveals plaintext.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

Design cryptographic systems

so that forgeries are sent through

as much processing as possible.

e.g. Design SSL to decrypt

and check padding before

checking a serious MAC.

Broken by padding-oracle attacks

such as BEAST and POODLE.

e.g. Design “encrypt-only”

IPsec options. Broken by 2006

Paterson–Yau for Linux and 2007

Degabriele–Paterson for RFCs.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Randomness

1995 Goldberg–Wagner: Netscape

SSL keys had <50 bits of entropy.

2008 Bello: Debian/Ubuntu

OpenSSL keys for years had

<20 bits of entropy.

2012 Lenstra–Hughes–Augier–

Bos–Kleinjung–Wachter and 2012

Heninger–Durumeric–Wustrow–

Halderman broke the RSA public

keys for 0.5% of all SSL servers.

The primes had so little

randomness that they collided.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Make randomness-generation code

extremely difficult to audit.

Have each application maintain

its own RNG “for speed”.

Maintain separate RNG code for

each application. “For simplicity”

build this RNG in ad-hoc ways

from the inputs conveniently

available to that application.

Pay people to use backdoored

RNGs such as Dual EC.

Claim “provable security”.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

What if the terrorists

merge all available inputs

into a central entropy pool?

This pool can survive many

bad/failing/malicious inputs

if there is one good input.

Merging process is auditable.

Yikes!

Claim performance problems in

writing to a central pool,

reading from a central pool.

Modify pool to make it unusable

(random) or scary (urandom).

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

What if the terrorists realize that

RNG speed isn’t an issue?

Make it an issue! Design crypto

to use randomness as often as

possible. This also complicates

tests, encouraging bugs.

e.g. DSA and ECDSA use a

new random number k to sign

m; could have replaced k with

H(s;m). 1992 Rivest: “the poor

user is given enough rope with

which to hang himself”. 2010

Bushing–Marcan–Segher–Sven

“PS3 epic fail”: PS3 forgeries.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Pure crypto failures

2008 Stevens–Sotirov–

Appelbaum–Lenstra–Molnar–

Osvik–de Weger exploited

MD5 ⇒ rogue CA for TLS.

2012 Flame: new MD5 attack.

Fact: By 1996, a few years

after the introduction of MD5,

Preneel and Dobbertin were

calling for MD5 to be scrapped.

We managed to keep MD5. How?

Speed; standards; compatibility.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

2014: DNSSEC uses RSA-1024

to “secure” IP addresses.

e.g. dnssec-deployment.org

address is signed by RSA-1024.

Fact: Analyses in 2003 concluded

that RSA-1024 was breakable;

e.g., 2003 Shamir–Tromer

estimated 1 year, ≈107 USD.

DNSSEC’s main excuse

for sticking to RSA-1024: speed.

“Tradeoff between the risk of key

compromise and performance.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

How to convince terrorists

that secure crypto is too slow?

Many techniques: obsolete data,

incompetent benchmarks, fraud.

Example:

“PRESERVE contributes to the

security and privacy of future

vehicle-to-vehicle and vehicle-

to-infrastructure communication

systems by addressing critical

issues like performance, scalability,

and deployability of V2X security

systems.”

preserve-project.eu

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

“[In] most driving situations : : :

the packet rates do not exceed

750 packets per second. Only the

maximum highway scenario : : :

goes well beyond this value

(2,265 packets per second). : : :

Processing 1,000 packets per

second and processing each in 1

ms can hardly be met by current

hardware. As discussed in [32],

a Pentium D 3.4 GHz processor

needs about 5 times as long for

a verification : : : a dedicated

cryptographic co-processor is

likely to be necessary.”

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Compare to “NEON crypto”

on 1GHz Cortex-A8 core:

5.48 cycles/byte (1.4 Gbps),

2.30 cycles/byte (3.4 Gbps)

for Salsa20, Poly1305.

498349 cycles (2000/second),

624846 cycles (1600/second)

for Curve25519 DH, verify.

1GHz Cortex-A8 was high-end

smartphone core in 2010: e.g.,

Samsung Exynos 3110 (Galaxy S);

TI OMAP3630 (Motorola Droid

X); Apple A4 (iPad 1/iPhone 4).

2013: Allwinner A13, $5 in bulk.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

What if the terrorists

hear about fast secure crypto?

Yikes!

Similar to constant-time story.

Don’t standardize good crypto.

Discourage use of good crypto.

If the good crypto persists,

try to bury it behind

a huge menu of bad options.

Advertise “cryptographic agility”;

actually cryptographic fragility.

Pretend that this “agility”

justifies using breakable crypto.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it’s too early

to look at “the hard problem”

when most data is still unsigned.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it’s too early

to look at “the hard problem”

when most data is still unsigned.

More strategies

Divert “crypto” funding

and human resources

into activities that don’t

threaten mass surveillance.

Set up centralized systems

encrypting data to companies

that collaborate with us.

More distraction: build systems

breakable by active attacks.

Declare crypto success

without encrypting the Internet.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it’s too early

to look at “the hard problem”

when most data is still unsigned.

More strategies

Divert “crypto” funding

and human resources

into activities that don’t

threaten mass surveillance.

Set up centralized systems

encrypting data to companies

that collaborate with us.

More distraction: build systems

breakable by active attacks.

Declare crypto success

without encrypting the Internet.

Precomputed signatures

Try to build cryptographic fragility

into many layers of the system.

e.g. Complicate the protocols.

Split cryptographic security

into “the easy problem”

of protecting integrity

and “the hard problem”

of protecting confidentiality.

e.g. argue against encrypted SNI

since DNS is unencrypted,

and argue against encrypted DNS

since SNI is unencrypted.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it’s too early

to look at “the hard problem”

when most data is still unsigned.

More strategies

Divert “crypto” funding

and human resources

into activities that don’t

threaten mass surveillance.

Set up centralized systems

encrypting data to companies

that collaborate with us.

More distraction: build systems

breakable by active attacks.

Declare crypto success

without encrypting the Internet.

Solve “the easy problem”

by precomputing signatures.

Insist that the protocol

allow precomputation “for speed”.

e.g. DNSSEC.

The protocol has trouble handling

dynamically generated answers,

and unpredictable questions; also,

trouble guaranteeing freshness.

Deployment hits many snags.

Argue that it’s too early

to look at “the hard problem”

when most data is still unsigned.

More strategies

Divert “crypto” funding

and human resources

into activities that don’t

threaten mass surveillance.

Set up centralized systems

encrypting data to companies

that collaborate with us.

More distraction: build systems

breakable by active attacks.

Declare crypto success

without encrypting the Internet.

