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IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.
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“reliable data streams”.
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computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.
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DEM security hypothesis:

weak single-message version

of security for secret-key

authenticated encryption.

Chou: Is it safe to reuse k

for multiple messages?

Answer: KEM+AE is safe;

KEM+AE ⇒ KEM+“nDEM”.

(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:

Use KEM+DEM to encrypt an

n-time secret key m; reuse m.
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DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c ,

server’s public key S = sG.
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packet containing cG; Ek (0; q)

where k = H(cS);

E is authenticated cipher;

q is DNS query.

Server → client:

packet containing Ek (1; r)

where r is DNS response.
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Attacker can’t guess k,

can’t decrypt Ek (0; q); Ek (1; r).

Integrity:
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Attacker can replay request.
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continues waiting for reply,
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20

Most important limitation

on reuse of public keys:

switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy”—

subsequent theft of computer

doesn’t allow decryption.

e.g. Microsoft SChannel

switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.
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22

How does a stateless server

encrypt to a new client key

without storing the key?

Slice McEliece public key

so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),

receives outputs as cookies,

sends cookies (in parallel).

Server combines cookies.

Continue up through tree.

Server generates randomness

as secret function of key hash.

Statelessly verifies key hash.


