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Bit operations per bit of plaintext

(assuming precomputed subkeys),

as listed in recent Skinny paper:

key ops/bit cipher

128 88 Simon: 60 ops broken
128 100 NOEKEON
128 117 Skinny

256 144 Simon: 106 ops broken
128 147.2 PRESENT
256 156 Skinny
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128 202.5 AES
256 283.5 AES
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Operation counts are a

poor model of hardware cost,

worse model of software cost.

Pick a cipher: e.g., Salsa20.

How fast is Salsa20 software?

First step in analysis:

Write simple software.

e.g. Bernstein–van Gastel–

Janssen–Lange–Schwabe–

Smetsers “TweetNaCl”

includes essentially the following

implementation of Salsa20:
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implementation of Salsa20:

4

int crypto_core_salsa20(u8 *out,

const u8 *in,const u8 *k,const u8 *c)

{

u32 w[16],x[16],y[16],t[4];

int i,j,m;

FOR(i,4) {

x[5*i] = ld32(c+4*i);

x[1+i] = ld32(k+4*i);

x[6+i] = ld32(in+4*i);

x[11+i] = ld32(k+16+4*i);

}

FOR(i,16) y[i] = x[i];
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static const u8 sigma[16]

= "expand 32-byte k";

int crypto_stream_salsa20_xor(u8 *c,

const u8 *m,u64 b,const u8 *n,const u8 *k)

{

u8 z[16],x[64];

u32 u,i;

if (!b) return 0;

FOR(i,16) z[i] = 0;

FOR(i,8) z[i] = n[i];

while (b >= 64) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,64) c[i] = (m?m[i]:0) ^ x[i];

u = 1;
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for (i = 8;i < 16;++i) {

u += (u32) z[i];

z[i] = u;

u >>= 8;

}
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c += 64;

if (m) m += 64;

}

if (b) {

crypto_core_salsa20(x,z,k,sigma);

FOR(i,b) c[i] = (m?m[i]:0) ^ x[i];
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