Usable verification of terminal

fast cryptographic software

Daniel J. Bernstein

Processes files

University of lllinois at Chicago &
Technische Universiteit Eindhoven

RAM disk

Operating-system kernel
divides RAM among processes,

divides disk among files.
|

Provides convenient functions
for processes to access files,
start new processes, etc.

erification of

tographic software

. Bernstein

ty of lllinois at Chicago &
he Universiteit Eindhoven

. dlilgli[ta]]

terminal

ProCesses

RAM

files

disk

Operating-system kernel

C

C

ivides RAM among processes,

ivides disk among files.

Provides convenient functions

for processes to access files,

start new processes, etc.

my -

my [

Donald

Donald

of
software

is at Chicago &
siteit Eindhoven

E0B00E0

terminal
processes files
RAM disk

Operating-system kernel
divides RAM among processes,

divides disk among files.
Provides convenient functions
for processes to access files,
start new processes, etc.

my terminal

My Processes F

RAM

Donald’'s processe

Donald’s termina

g0 &

hoven

terminal

processes

files

RAM

disk

Operating-system kernel

divides RAM among processes,
divides disk among files.

Provides convenient functions

for processes to access files,

start new processes, etc.

my terminal

My processes

RAM

Donald’s processes

Donald’s terminal

terminal
Processes files
RAM disk

Operating-system kernel
divides RAM among processes,

divides disk among files.
Provides convenient functions
for processes to access files,
start new processes, etc.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

0g files

J disk

1g-system kernel

RAM among processes,
lisk among files.
 convenient functions
asses to access files,

N processes, etc.

my terminal

My processes

RAM

my files

disk

Donald’s processes

Donald’s
files

Donald’s terminal

Can Dor
appearin

Isk

kernel

g processes,
y files.

1t functions
cess files,

S, etc.

my terminal

my processes

RAM

my files

disk

Donald’s

DIrOCEeSSES

Donald’s
files

Donald’s terminal

Can Donald corruj
appearing on my t

€S,

1S

my terminal

My processes

RAM

my files

disk

Donald’s

DIFOCESSES

Donald’s
files

Donald’s terminal

Can Donald corrupt the ¢

appearing on my termina

at.

my terminal

my processes

RAM

my files

disk

Donald’s

DIrOCEeSSES

Donald’s
files

Donald’s terminal

Can Donald corrupt the ¢

appearing on my termina

ata

my terminal

my processes

RAM

my files

disk

Donald’s

DIrOCEeSSES

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.
Defense: physical security.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.

Defense: | have a high-entropy

randomly generated password.

Attack: replace the terminal

with a rigged terminal that

Intercepts my password.

Defense: physical security.

Attack: use my terminal earlier

and leave a program running that

ooks like t

out Interce

N€ uUsSua

DTS my

login screen

yassword.

my terminal

my processes

RAM

my files

disk

Donald’'s processes

Donald’s
files

Donald’s terminal

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.
Defense: physical security.

Attack: use my terminal earlier
and leave a program running that
ooks like the usual login screen

out Intercepts my password.
Defense: secure attention key.

rerminal Can Donald corrupt the data Donald |

' appearing on my terminal? data on

. Attack: guess my password. Attack:

OCESSES my files Defense: | have a high-entropy part of |
randomly generated password.

A M dick Attack: replace the terminal

- with a rigged terminal that

Intercepts my password.

Donald’s| | Defense: physical security.

S processes

files

Attack: use my terminal earlier
and leave a program running that

ooks like the usual login screen

's terminal

out Intercepts my password.

Defense: secure attention key.

my files

disk

S

Donald’s
files

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.
Defense: physical security.

Attack: use my terminal earlier
and leave a program running that
ooks like the usual login screen

out Intercepts my password.
Defense: secure attention key.

Donald 1s authoriz
data on the same

Attack: Donald st
part of RAM, or n

ny files

disk

onald’s
files

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
iIntercepts my password.
Defense: physical security.

Attack: use my terminal earlier
and leave a program running that
ooks like the usual login screen

out Intercepts my password.
Defense: secure attention key.

Donald i1s authorized to stor
data on the same computer.

Attack: Donald stores data
part of RAM, or my part of

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.
Defense: physical security.

Attack: use my terminal earlier
and leave a program running that
ooks like the usual login screen

out Intercepts my password.
Defense: secure attention key.

Donald is authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Can Donald corrupt the data

appearing on my terminal?

Attack: guess my password.
Defense: | have a high-entropy
randomly generated password.

Attack: replace the terminal
with a rigged terminal that
Intercepts my password.
Defense: physical security.

Attack: use my terminal earlier
and leave a program running that
ooks like the usual login screen

out Intercepts my password.
Defense: secure attention key.

Donald is authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

1ald corrupt the data

g on my terminal?

guess my password.
| have a high-entropy
y generated password.

replace the terminal
gged terminal that
ts my password.

- physical security.

use my terminal earlier
e a program running that
e the usual login screen

rcepts my password.
 secure attention key.

Donald i1s authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

Bugs In
can com
allowing
to my p.

ot the data

erminal?

password.
high-entropy
d password.

e terminal
1nal that
sword.
security.

rminal earlier
m running that
| login screen
nassword.

'tention key.

Donald is authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection™.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

Bugs in this kerne
can compromise S
allowing Donald t
to my part of RAN

Py

lier
r that
een

Donald i1s authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Donald is authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Donald is authorized to store
data on the same computer.

Attack: Donald stores data in my
part of RAM, or my part of disk.

Two-part defense:

1. “Memory protection”.
Hardware does not allow
processes to access data

outside areas marked by kernel.

2. Kernel keeps track of which
parts of RAM and disk are mine,
and which parts are Donald's.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive
but not impossible when
code volume is small enough.

Successful example:
computer-verified proof of
seL4 microkernel correctness,
including RAM partitioning etc.

s authorized to store
the same computer.

Donald stores data in my
RAM, or my part of disk.

t defense:

nory protection’ .
e does not allow
s to access data

areas marked by kernel.

2| keeps track of which
RAM and disk are mine,
“h parts are Donald'’s.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive
but not impossible when
code volume is small enough.

Successful example:
computer-verified proof of
seL4 microkernel correctness,

including RAM partitioning etc.

If 2 sma
has cut

commun

| can rui
program
and still

Donald |
the outp

ed to store
computer.

ores data in my
1y part of disk.

ction’ .
t allow
s data

ed by kernel.

ack of which
disk are mine,
e Donald’s.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive
but not impossible when
code volume i1s small enough.

Successful example:
computer-verified proof of
seL4 microkernel correctness,

including RAM partitioning etc.

If a small bug-free

has cut off Donalc

communication wi

| can run a 10000
program filled witl

and still be confid

Donald i1s unable t

the output of the

In my

disk.

nel.

ich

nine,

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive
but not impossible when
code volume is small enough.

Successful example:
computer-verified proof of
seL4 microkernel correctness,

including RAM partitioning etc.

If a small bug-free kernel
has cut off Donald’s

communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

Bugs in this kernel code If a small bug-free kernel
can compromise security, has cut off Donald's
allowing Donald to write communication with me:

to my part of RAM or disk. | can run a 10000000-line

Fix: Eliminate the bugs! program filled with bugs,
and still be confident that

Bug-free code is expensive |
Donald 1s unable to corrupt

but not impossible when

- the output of the program.
code volume is small enough. P Prog

Successful example:
computer-verified proof of
seL4 microkernel correctness,
including RAM partitioning etc.

Bugs in this kernel code
can compromise security,
allowing Donald to write
to my part of RAM or disk.

Fix: Eliminate the bugs!

Bug-free code is expensive
but not impossible when
code volume i1s small enough.

Successful example:
computer-verified proof of
seL4 microkernel correctness,

including RAM partitioning etc.

If a small bug-free kernel

has cut off Donald’s
communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy.
The 10000000-line program

Is not part of the TCB.

this kernel code
promise security,

Donald to write
art of RAM or disk.

ninate the bugs!

' code Is expensive
Impossible when
ume 1s small enough.

ul example:
r-verified proof of
“rokernel correctness,

r RAM partitioning etc.

If a small bug-free kernel
has cut off Donald’s

communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy.
The 10000000-line program

is not part of the TCB.

But we

Today:
| downlc
These u
to put d

| code
acurity,

D write

/I or disk.

bugs!

Xpensive
' when

all enough.

e:
proof of
orrectness,

rtitioning etc.

If a small bug-free kernel

has cut off Donald’s
communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy:.
The 10000000-line program

Is not part of the TCB.

But we want com|

Today: Alice send
| download Bob's
These users are at
to put data on my

etc.

If a small bug-free kernel
has cut off Donald’s

communication with me:

| can run a 10000000-line

program filled with bugs,
and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy.
The 10000000-line program

is not part of the TCB.

But we want communicatiol

Today: Alice sends me emai
| download Bob's web page.
These users are authorized
to put data on my screen.

If a small bug-free kernel

has cut off Donald’s
communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy:.
The 10000000-line program

Is not part of the TCB.

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

If a small bug-free kernel

has cut off Donald’s
communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy:.
The 10000000-line program

Is not part of the TCB.

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

Security policy: Whenever the
computer shows me a file, it also
tells me the source of the file.

If a small bug-free kernel

has cut off Donald's

communication with me:

| can run a 10000000-line
program filled with bugs,

and still be confident that
Donald 1s unable to corrupt

the output of the program.

The trusted computing base
(TCB) is the part of the system
that enforces security policy:.
The 10000000-line program

Is not part of the TCB.

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

Security policy: Whenever the
computer shows me a file, it also
tells me the source of the file.

If Donald creates a file

and convinces the computer
to show me the file

as having source “Alice”
then this policy is violated.

Il bug-free kernel
off Donald’s
ication with me:

1 a 10000000-line
filled with bugs,
be confident that
s unable to corrupt

ut of the program.

sted computing base
s the part of the system
orces security policy.
00000-line program

irt of the TCB.

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

Security policy: Whenever the

computer shows me a file, it also
tells me the source of the file.

If Donald creates a file

and convinces the computer
to show me the file

as having source “Alice”
then this policy Is violated.

Pwn20wr
Hacks Go

Mar 17, 2016, OS

VANCOUVER, Bri

Team from Qihoo
vulnerabilities, an

Chinese security t

360Vulcan Team

nhtainina the hink

kernel
I's
th me:

)00-line

1 bugs,
ent that
0 corrupt
program.

puting base
of the system
rity policy.

> program
TCB.

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

Security policy: Whenever the
computer shows me a file, it also
tells me the source of the file.

If Donald creates a file

and convinces the computer
to show me the file

as having source “Alice”
then this policy Is violated.

PN Pwn2O0wn 2016: Chin... x | =

www.prnewswire.com/news-releases/pwnZown-2 EJ | C

Pwn20wn 2016: Chine
Hacks Google Chrome

Mar 17, 2016, 09:12 ET from Qihoo 3¢

o]

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17
Team from Qihoo 360 hacked Google Cr
vulnerabilities, and obtained the highest ¢

Chinese security team has hacked Goog|

360Vulcan Team also hacked Adobe Flas

nhtaininn the hinhect evetem nrivilene w

tem

But we want communication!

Today: Alice sends me email.

| download

Bob's web page.

These users are authorized

to put data

Security po
computer s

on my screen.

icy: Whenever the

nows me a file, it also

tells me the source of the file.

If Donald creates a file

and convinces the computer

to show me the file

as having source “Alice”

then this policy Is violated.

Pr Pwn20wn 2016: Chin... x | &

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & -_ | A search] % B8

Pwn20wn 2016: Chinese Research
Hacks Google Chrome within 11 mir

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- .
Team from Qihoo 360 hacked Google Chrome, the browser witr
vulnerabilities, and obtained the highest system privilege. It's the

Chinese security team has hacked Google Chrome at the Pwn2(

360Vulcan Team also hacked Adobe Flash Player based on Edg

nhtainina the hinheact evetem nrivilene whicrh winn the team a 1 1€

But we want communication!

Today: Alice sends me email.
| download Bob's web page.
These users are authorized
to put data on my screen.

Security policy: Whenever the
computer shows me a file, it also
tells me the source of the file.

If Donald creates a file

and convinces the computer
to show me the file

as having source “Alice”
then this policy Is violated.

PN Pwn2O0wn 2016: Chin... x | =

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & ._ | A search | ¥ B8 4+ H =

= PR Newswire & Q I

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhecst evetem nrivilene which winn the team a LIS Q0 0NN

want communication!

Alice sends me email.
ad Bob's web page.
sers are authorized
ata on my screen.

policy: Whenever the

r shows me a file, it also
the source of the file.

d creates a file
vinces the computer
me the file

g source “Alice”

5 policy Is violated.

Pr Pwn20wn 2016: Chin... x | &

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & -_ |2, search - & B 4+ HF =

— PR Newswire & Q I

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhect evetem nrivilene whirh winn the team a LISDH Q0 0NN

Which p
enforces

munication!

s me email.
web page.
ithorized

' screen.

/henever the
e a file, it also
> of the file.

y file
computer
a

‘Alice”
violated.

PN Pwn2O0wn 2016: Chin... x | =

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & ._ | Q, search | & B 4 @ =

= PR Newswire S [

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhecst evetem nrivilene which winn the team a LIS Q0 0NN

Which part of the
enforces the secur

- also

Pr Pwn20wn 2016: Chin... x | &

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & -_ |2, search - & B 434 # =

— PR Newswire & Q

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhect evetem nrivilene whirh winn the team a LISDH Q0 0NN

Which part of the system
enforces the security policy?

PN Pwn2O0wn 2016: Chin... x | =

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & ._ | Q, search | & B 4 #

— PR Newswire & Q

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhecst evetem nrivilene which winn the team a LIS Q0 0NN

Which part of the system
enforces the security policy?

10

PN Pwn2O0wn 2016: Chin... x | =

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & ._ | A search | ¥ B8 4+ H =

— PR Newswire & Q

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhecst evetem nrivilene which winn the team a LIS Q0 0NN

{

10
Which part of the system

enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

PN Pwn2O0wn 2016: Chin... x | =

i) | www.prnewswire.com/news-releases/pwn2own-2 EJ1 | & ._ | A search | ¥ B8 4+ H =

= PR Newswire & Q I

PwnZ20wn 2016: Chinese Researcher
Hacks Google Chrome within 11 minutes

Mar 17, 2016, 09:12 ET from Qihoo 360

Chinese Security Team in Global Arena

f Facebook o Twitter @ Pinterest

VANCOUVER, British Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
Team from Qihoo 360 hacked Google Chrome, the browser with the least
vulnerabilities, and obtained the highest system privilege. It's the first time a

Chinese security team has hacked Google Chrome at the Pwn20wn contest.

360Vulcan Team also hacked Adobe Flash Player based on Edge browser,

nhtainina the hinhecst evetem nrivilene which winn the team a LIS Q0 0NN

10
Which part of the system

enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

< | 4
wn2 E1| @ |[Q search & B 3 & =

swire & Q

1 2016: Chinese Researcher
ogle Chrome within 11 minutes

112 ET from Qihoo 360

2am in Global Arena

Twitter @ Pinterest

tish Columbia, March 17, 2016 /PRNewswire/ -- 360Vulcan
360 hacked Google Chrome, the browser with the least
1 obtained the highest system privilege. It's the first time a

eam has hacked Google Chrome at the Pwn20wn contest.

also hacked Adobe Flash Player based on Edge browser,

net evetem nrivilene whirh wnn the team a LISD Q0 000

Which part of the system
enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

10

Cryptog

What h:
through

B U 3 & =

se Researcher
within 11 minutes

0

2016 /PRNewswire/ -- 360Vulcan

rome, the browser with the least
system privilege. It's the first time a

e Chrome at the Pwn20wn contest.

sh Player based on Edge browser,

hirh wnn the team a 11SD Q0 0NN

Which part of the system
enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

10

Cryptography in tl

What happens if ¢
through Donald's

1utes

360Vulcan

 the least
 first time a

owhn contest.

e browser,

N 2N 0NN

Which part of the system
enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

10

Cryptography in the TCB

What happens if data is sen
through Donald’s network?

Which part of the system
enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

10

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

11

Which part of the system
enforces the security policy?

Widely deployed software systems
make no real efforts to limit this.

There Is some “security’ code
inside kernel and browser.

But bugs in other code

can and do compromise security.

TCB has >30000000 lines.

Fix: rearchitect entire system
so that a small TCB

tracks sources of all data.
Eliminate all bugs in TCB.

10

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication In a way
that Donald cannot understand
and cannot silently corrupt.

11

art of the system
the security policy?

leployed software systems
 real efforts to limit this.

some “security’ code
rnel and browser.

s In other code

do compromise security.

s >30000000 lines.

rchitect entire system
y small TCB

yurces of all data.
e all bugs in TCB.

10

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication in a way
that Donald cannot understand
and cannot silently corrupt.

11

OpenSS
500000
are man

All of th
Many de

Why is

system
ty policy?

oftware systems
ts to limit this.

curity’ code
rowser.

code

omise security.

)00 lines.

tire system
CB

[l data.

in TCB.

10

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication In a way
that Donald cannot understand
and cannot silently corrupt.

11

OpenSSL crypto |i
500000 lines of co
are many other cr

All of this is in the
Many devastating

Why is crypto so

stems
this.

de

Irity.

10

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication in a way
that Donald cannot understand
and cannot silently corrupt.

11

OpenSSL crypto library has
500000 lines of code, and tk
are many other crypto librar

All of this is in the TCB.
Many devastating security b

Why is crypto so big?

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication In a way
that Donald cannot understand
and cannot silently corrupt.

11

OpenSSL crypto library has
500000 lines of code, and there

are many other crypto libraries.

All of this is in the TCB.

Why is crypto so big?

Many devastating security bugs.

12

Cryptography in the TCB

What happens if data is sent
through Donald’s network?

Solution: Sender and receiver
scramble communication In a way
that Donald cannot understand
and cannot silently corrupt.

11

OpenSSL crypto library has
500000 lines of code, and there

are many other crypto libraries.

All of this is in the TCB.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

Many devastating security bugs.

12

raphy in the TCB

ppens if data is sent
Donald’s network?

. Sender and receiver

> communication In a way
rald cannot understand
not silently corrupt.

11

OpenSSL crypto library has
500000 lines of code, and there
are many other crypto libraries.

All of this is in the TCB.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

Many devastating security bugs.

12

e.g. Vari
arithmet
consume
Includes
optimize

e TCB

lata Is sent

network?

\nd receiver
iIcation In a way
ot understand

y corrupt.

11

OpenSSL crypto library has
500000 lines of code, and there
are many other crypto libraries.

All of this is in the TCB.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

Many devastating security bugs.

12

e.g. Variab
arithmetic

e-lengt
ibrary |

consumes 50000 i

Includes 38 asm iIr

optimized for varic

11

OpenSSL crypto library has
500000 lines of code, and there
are many other crypto libraries.

All of this is in the TCB.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

Many devastating security bugs.

12

e.g. Variab
arithmetic

e-length-big-inte,
ibrary inside Ope

consumes 50000 lines of coc

Includes 38 asm implementa

optimized for various CPUs.

OpenSSL crypto library has
500000 lines of code, and there
are many other crypto libraries.

All of this is in the TCB.
Many devastating security bugs.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

12

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

13

OpenSSL crypto library has
500000 lines of code, and there
are many other crypto libraries.

All of this is in the TCB.
Many devastating security bugs.

Why is crypto so big?

Most important answer:
the pursuit of performance.

(Same issue elsewhere in TCB,
but most blatant for crypto.
The rest of this talk

will focus on crypto.)

12

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA signature verification:
(H(M)/S)B + (x(R)/S)A =R

with S checked to be nonzero.

OpenSSL has complicated code
for fast computation of 1/S.

Checking HHM)B + x(R)A = SR
would be somewhat slower.

13

L crypto library has
ines of code, and there
v other crypto libraries.

s is in the TCB.

vastating security bugs.

crypto so big?

portant answer:
uit of performance.

ssue elsewhere in TCB,
t blatant for crypto.

- of this talk

s on crypto.)

12

e.g. Variable-length-big-integer
ibrary inside OpenSSL
consumes 50000 lines of code.

arithmetic

Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA signature verification:

(H(M)/S)B + (x(R)/S)A= R

with S checked to be nonzero.

OpenSSL has complicated code
for fast computation of 1/S.

Checking HHM)B + x(R)A = SR
would be somewhat slower.

13

e.g. NIS
2256 _9

ECDSA

reductio
an integ

Write A
(A1s, A1
Ag, A7,

meaning

Define
T;51;5;

dS

brary has
de, and there
vypto libraries.

> TCB.

security bugs.

big?

1SWeEr.

ormance.

here in TCB,
or crypto.
Ik

0.)

12

e.g. Variab
arithmetic

e-length-big-integer
ibrary inside OpenSSL

consumes 50000 lines of code.

Includes 38 asm implementations

optimized for various CPUs.

e.g. ECDSA signature verification:

(H(M)/S)B + (x(R)/S)A= R

with S checked to be nonzero.

OpenSSL has complicated code

for fast computation of 1/S.

Checking HHM)B + x(R)A = SR
would be somewhat slower.

13

e.g. NIST P-256
2256 o 2224 4 2192

ECDSA standard

reduction procedu
an integer “A less

Write A as
(A1s, A1a, A13, A1
Ag, A7, Ag, As, A

meaning S_; A;2%

Define
T;51;592;53;54; L

dS

ere
les.

ugs.

12

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA signature verification:

(H(M)/S)B + (x(R)/S)A= R

with S checked to be nonzero.

OpenSSL has complicated code
for fast computation of 1/S.

Checking HIM)B + x(R)A = SR
would be somewhat slower.

13

e.g. NIST P-256 prime p is
2256 o 2224 4 2192 + 296 _

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A12, A11, A1
Ag. A7, Ac. As. Au. A3, Ay

meaning 3_: A;23%

Define
T:51;592;53;54; D1; Dy; D3
as

e.g. Variable-length-big-integer

arithmetic library inside OpenSSL
consumes 50000 lines of code.
Includes 38 asm implementations
optimized for various CPUs.

e.g. ECDSA signature verification:

(H(M)/S)B + (x(R)/S)A= R

with S checked to be nonzero.

OpenSSL has complicated code
for fast computation of 1/S.

Checking HHM)B + x(R)A = SR
would be somewhat slower.

13

14
e.g. NIST P-256 prime p is

2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
Ag, A7, Ap. As, A4, A3, Az, A1, Ap),

meaning 3_: A;23%'.

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

able-length-big-integer

ic library inside OpenSSL
s 50000 lines of code.

38 asm implementations
d for various CPUs.

D)SA signature verification:

S)B+ (x(R)/S)A =R,

hecked to be nonzero.

L has complicated code
computation of 1/8S.

s HHM)B + x(R)A = SR
> somewhat slower.

13

e.g. NIST P-256 prime p is
2256 o 2224 4 2192 + 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as
(A1s, A1a, A13, A12, A11, A10, Ao,

As, A7, A, As, Ag, A3, As, A1, Ao),

meaning 3_: A;23%

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

14

Reduce
subtract

h-big-integer
nside OpenSSL
nes of code.
nplementations

yus CPUs.

ture verification:

R)/S)A=R,

be nonzero.

plicated code
on of 1/S.

+ x(R)A= SR
1t slower.

13

e.g. NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”:

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
Ag, A7, Ap. As, A4, A3, Az, A1, Ap),

meaning 3_: A; 232",

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

14

(A10,As,0,0,0, A
(A11, A9, 0,0, Azs,
(A12,0, A1g, Ag, A
(A13,0, A11, A10, /

Compute T + 257
So. — D1 — Dy — [

Reduce modulo p
subtracting a few

yer
nSSL
le.

tions

-ation:

ro.

ode

= SR

13 14
e.g. NIST P-256 prime p is

2256 o 2224 4 2192 + 296 1

ECDSA standard specifies

reduction procedure given
an integer "A less than p?”

Write A as

(A1s, A14, A13, A12, A11, A10, Ao,
Ag, A7, Ap. As, A4, A3, Az, A1, Ap),

meaning 3 A;23%'.

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

(A7, A6, As, Ay, A3, Ao, Ay, £
(A15, A14, A13, A12, A11,0,0
(0, A1s, A14, A13, A12,0,0,0
(A15,A14,0,0,0, Aqg, Ag, Ag
(A, A13, A1s, A1, A13, A11,
(A10,Ag,0,0,0, A13, A12, A
(A11, A9, 0,0, Ats, A14, A13,
(A12,0, A10, Ag, A, A1s, A14
(A13,0, A11, A10, A9, 0, A1s,

Compute T + 251 4+ 257 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by addin
subtracting a few copies” of

e.g. NIST P-256 prime p is
2256 o 2224 4 2192 4 296 1

ECDSA standard specifies

reduction procedure given
an integer “A less than p?”

Write A as
(A1s, A14, A13, A12, A11, A10, Ao,

Ag, A7, Ag, As, Ag, A3, Aa, A1, Ao),

meaning 3_: A;23%,

Define
T;51;52;53;54; D1; Dy; D3; Dy
as

14

15
Ag, As, Ag, Az, A, A1, Ag);

(A7

(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A15, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11),;
(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

T P-256 prime p is

standard specifies
n procedure given
r “A less than p2”

as
4, A13, A12, A11, A10, Ao,

Ae, As, Ag, A3, Ao, A1, Ao),

;53; 54; D1; Do; D3; Dy

14

15
Ag, As, Ag, Az, Ao, A1, Ag);

(A7
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A1a, A13, A11, A1, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

Next-gel

One of 1

removin,

security,

In partic
simple h
setting r

e.g. 200
IS twice

and muc

>10000:t
today: 1
Tor, QU

rime p Is
+2% -1,

specifies
re given
than p2”

, A11, A10, Ao,

1, Az, Ao, A1, Ap),

1

)1; Do; D3; Dy

14

15
 As, As, Ag, Az, Ao, A1, Ag);

(A7

(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11),;

(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

Next-generation ci

One of my favorit
removing tensions
security, simplicity

In particular, desig
simple high-securi
setting new speed

e.g. 2006 Bernstel
IS twice as fast as
and much simpler

>1000000000 Cur
today: 10S, Signa
Tor, QUIC, Whats

14

15
Ag, As, Ag, Az, A, A1, Ag);

(A7
(A1, A14, A13, A12, A11, 0,0, 0);

(0, A1s, A14, A13, A12, 0,0, 0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Ag);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A5, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, Ag, 0, A1s, A14).

Compute T + 251 + 257 + 53 +
Sy — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies” of p.

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve?2
Is twice as fast as standard |
and much simpler to implen

>1000000000 Curve25519
today: i10S, Signal, OpenSS
Tor, QUIC, WhatsApp, mor:

15
As, As, Ag, Az, A, A1, Ag);

(A7

(A1s5, A14, A13, A12, A11, 0,0, 0);

(0, A1, A14, A13, A12,0,0,0);

(A1s, A14,0,0,0, A1g, Ag, Ag);

(As, A13, A1s, A14, A13, A11, A10, Aog);
(A10,Ag,0,0,0, A3, A12, A11);

(A11, A9, 0,0, A1s, A14, A13, A12);
(A12,0, A10, Ag, Ag, A1s, A14, A13);
(A13,0, A11, A10, A9, 0, A1s, A14).

Compute T + 2571 + 257 + 53 +
Sp — D1 — Dy — D3 — Dy.

Reduce modulo p “by adding or
subtracting a few copies’ of p.

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

15
As, Ag, Az, A2, A1, Ap);

4, A13, A12, A11, 0,0, 0);

A1, A13, A12,0,0,0);
4,0,0,0, A10, Ag, Ag);

, A1s, A14, A13, A11, A10. Ag);
,0,0,0, A13, A12, A11);

0,0, A1s, A1, A13, A12);
A10, Ag, Ag, A1s, A14, A13);
A11, A10, A9, 0, A1s, A14).

e T 4+ 251 + 257 + 53 +
— Dy — D3 — Dy,.

modulo p “by adding or
ing a few copies” of p.

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

NaCl: fz
nigh-sec

work wit

nacl. cz

15
, Az, A1, Ag);
., A11,0,0,0);
112,0,0,0);
\10, Ag, Ag);
A13, A11, A10. Ag);
3, A12, A11);

A14, A13, A12);
3, A1, A14, A13);
19,0, Ay, A14).

+ 250 + 53 +
)3 — Dy.

"by adding or
copies’ of p.

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

NaCl: fast easy-tc

nigh-security crypt
work with Lange ¢

nacl.cr.yp.to

15

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: i10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

nigh-security crypto

work with Lange anc

nacl.cr.yp.to

NaCl: fast easy-to-use

ibrary.
Schwa

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”
Is twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

nigh-security crypto
work with Lange anc

nacl.cr.yp.to

NaCl: fast easy-to-use

ibrary. Joint
Schwabe.

17

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

17

Next-generation crypto

One of my favorite topics:
removing tensions between
security, simplicity, speed.

In particular, designing
simple high-security crypto
setting new speed records.

e.g. 2006 Bernstein “Curve25519”

IS twice as fast as standard ECC
and much simpler to implement.

>1000000000 Curve25519 users
today: 10S, Signal, OpenSSH,
Tor, QUIC, WhatsApp, more.

16

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

1eration crypto

ny favorite topics:
o tensions between
simplicity, speed.

ular, designing
igh-security crypto
1ew speed records.

O Bernstein “Curve25519"
as fast as standard ECC
h simpler to implement.

)0000 Curve25519 users
0S, Signal, OpenSSH,
|C, WhatsApp, more.

16

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest
between
such as
and (e.g

'ypto

> topics:
between
, speed.

Nning

Yy Crypto
records.

n “Curve25519"

standard ECC
to implement.

ve2bb19 users
|, OpenSSH,
App, more.

16

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge:
between big-integs
such as a, b — ab
and (e.g.) 32-bit ¢

5519"
ECC

1ent.

|SEIS

(v

16

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operatic
such as a, b — ab mod 22°°

and (e.g.) 32-bit operations.

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

18

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

Some big-integer software
has been formally verified.
Could NaCl switch to this?

18

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

Some big-integer software

has been formally verified.
Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

18

NaCl: fast easy-to-use

nigh-security crypto library. Joint

work with Lange and Schwabe.

nacl.cr.yp.to

TweetNaCl: self-contained
100-tweet C library providing
the same easy-to-use
high-security functions. Joint
work with van Gastel, Janssen,
Lange, Schwabe, Smetsers.

twitter.com/tweetnacl

Can we guarantee zero bugs in
TweetNaCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

Some big-integer software
has been formally verified.
Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.
Timing can leak secret keys.
Not okay even for TweetNaCl.

18

st easy-to-use
urity crypto library. Joint

h Lange and Schwabe.
".yp.to

Cl: self-contained

2t C library providing
> easy-to-use

urity functions. Joint
h van Gastel, Janssen,
ychwabe, Smetsers.

~.com/tweetnacl

guarantee zero bugs in
]aCl? And in NaCl?

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2%°° — 19

and (e.g.) 32-bit operations.

Some big-integer software
has been formally verified.

Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.
Timing can leak secret keys.
Not okay even for TweetNaCl.

18

ACM C(
Schwabe
“Verityir
compute
correctn
In two h

Curve2b

-USe
o library. Joint

nd Schwabe.

ontained

y providing
Ise

jons. Joint
stel, Janssen,
>metsers.

bretnacl

e zero bugs in
d in NaCl?

17

Biggest challenge: the gap

between big-integer operations
such as a, b — ab mod 2295 _ 10

and

(e.g.) 32-bit operations.

Some big-integer software

has
Cou

been formally verified.

d NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.

Timing can leak secret keys.

Not

okay even for TweetNaCl.

18

ACM CCS 2014 C
Schwabe—Tsai—W:x
“Verifying Curve2!
computer-aided pr
correctness of mai
in two high-speed
Curve25519 imple

Joint
be.

U

1t

en,

gS INn

17

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2%2° — 19

and (e.g.) 32-bit operations.

Some big-integer software

has been formally verified.
Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.
Timing can leak secret keys.
Not okay even for TweetNaCl.

18

ACM CCS 2014 Chen—Hsu—
Schwabe—Tsai—Wang—Yang-
“Veritying Curve25519 softw
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementation

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

Some big-integer software
has been formally verified.
Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.
Timing can leak secret keys.
Not okay even for TweetNaCl.

18

19
ACM CCS 2014 Chen—Hsu-Lin—-

Schwabe—Tsai-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Biggest challenge: the gap

between big-integer operations
such as a, b — ab mod 2295 _ 10

and

(e.g.) 32-bit operations.

Some big-integer software

has
Cou

been formally verified.

d NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.

Timing can leak secret keys.

Not

okay even for TweetNaCl.

18

19
ACM CCS 2014 Chen—Hsu-Lin—-

Schwabe—Tsai-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Biggest challenge: the gap
between big-integer operations
such as a, b — ab mod 2222 — 19

and (e.g.) 32-bit operations.

Some big-integer software
has been formally verified.
Could NaCl switch to this?

1. Not state-of-the-art speed.
Okay for TweetNaCl; not NaCl.

2. Input-dependent timing.
Timing can leak secret keys.
Not okay even for TweetNaCl.

18

19
ACM CCS 2014 Chen—Hsu-Lin—-

Schwabe—Tsai-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Each proof also required
many hours of computer time.

challenge: the gap
big-integer operations

a. b+ ab mod 2%°° — 19
.) 32-bit operations.

g-integer software
1 formally verified.
aCl switch to this?

tate-of-the-art speed.
- TweetNaCl; not NaCl.

-dependent timing.
can leak secret keys.
vy even for TweetNaCl.

18

ACM CCS 2014 Chen—Hsu—Lin-
Schwabe-Tsai—-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Each proof also required
many hours of computer time.

19

Joint wc
new verl
focusing

gfverii

Automa
graph fr

Automa
convert

New pee

Ask hun

annotati
compute

the gap
r operations
mod 22°° — 19

perations.

software
verified.
' to this?

e-art speed.
ClI; not NaCl.

t timing.
acret keys.
TweetNaCl.

18

ACM CCS 2014 Chen—Hsu—Lin—
Schwabe—Tsai-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Each proof also required
many hours of computer time.

19

Joint work with S
new verifier gfvez
focusing on arithn
gfverif.crypto:

Automatically buil
graph from origin:

Automatically ana
convert ops Into p
New peephole ran,

Ask human for oc
annotations expres
computations on |

NS

— 19

1 Cl.

¢

18

ACM CCS 2014 Chen—Hsu—Lin-
Schwabe-Tsai—-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Each proof also required
many hours of computer time.

19

Joint work with Schwabe:
new verifier gfverif
focusing on arithmetic mod
gfverif.cryptojedi.org

Automatically build comput.
graph from original code.

Automatically analyze range
convert ops into polynomial:
New peephole range optimiz

Ask human for occasional
annotations expressing high-
computations on integers m

ACM CCS 2014 Chen—Hsu—Lin—
Schwabe—Tsai-Wang—Yang—Yang
“Verifying Curve25519 software™:
computer-aided proof of
correctness of main loops

in two high-speed asm
Curve25519 implementations.

Proof required extensive human
effort for each implementation:
many detailed annotations, plus
higher-level composition work.

Each proof also required
many hours of computer time.

19

Joint work with Schwabe:
new verifier gfverif

focusing on arithmetic mod p.
gfverif.cryptojedi.org

Automatically build computation
graph from original code.

Automatically analyze ranges,
convert ops into polynomials.
New peephole range optimizer.

Ask human for occasional
annotations expressing high-level

computations on integers mod p.

20

_S 2014 Chen—Hsu—-Lin—
— T sai-Wang—Yang—Yang
1g Curve25519 software”:
r-aided proof of

ess of main loops
igh-speed asm

519 implementations.

quired extensive human
r each implementation:
tailed annotations, plus
vel composition work.

yof also required
urs of computer time.

19

Joint work with Schwabe:
new verifier gfverif

focusing on arithmetic mod p.
gfverif.cryptojedi.org

Automatically build computation
graph from original code.

Automatically analyze ranges,
convert ops into polynomials.
New peephole range optimizer.

Ask human for occasional
annotations expressing high-level

computations on integers mod p.

20

Have ve
compute
for anot

Only 1
Under 3

annotati
Usable

Continui
annotati

be able-
annotati

hen—Hsu—Lin—
Ing—Yang—Yang
519 software™ :
oof of

n loops

asm
mentations.

ensive human
lementation:
otations, plus
)sition work.

quired
nputer time.

19

Joint work with Schwabe:
new verifier gfverif

focusing on arithmetic mod p.
gfverif.cryptojedi.org

Automatically build computation
graph from original code.

Automatically analyze ranges,
convert ops into polynomials.
New peephole range optimizer.

Ask human for occasional
annotations expressing high-level

computations on integers mod p.

20

Have verified entir
computation, not
for another implen

Only 1 minute of

Under 300 lines of
annotations per In

Usable by crypto

Continuing to imp
annotation langua
be able to reduce
annotations per In

Lin—
-Yang
jare’ :

nan
on:
plus

1€.

19

Joint work with Schwabe:
new verifier gfverif

focusing on arithmetic mod p.
gfverif.cryptojedi.org

Automatically build computation
graph from original code.

Automatically analyze ranges,
convert ops into polynomials.
New peephole range optimizer.

Ask human for occasional
annotations expressing high-level

computations on integers mod p.

20

Have verified entire Curve25b
computation, not just main
for another implementation.

Only 1 minute of computer

Under 300 lines of easy
annotations per implementa

Usable by crypto develope

Continuing to improve gfve
annotation language. Shouls
be able to reduce below 100
annotations per implementa

Joint work with Schwabe:
new verifier gfverif

focusing on arithmetic mod p.
gfverif.cryptojedi.org

Automatically build computation
graph from original code.

Automatically analyze ranges,
convert ops into polynomials.
New peephole range optimizer.

Ask human for occasional
annotations expressing high-level

computations on integers mod p.

20

Have verified entire Curve25519
computation, not just main loop,
for another implementation.

Only 1 minute of computer time.

Under 300 lines of easy
annotations per implementation.

Usable by crypto developers.

Continuing to improve gfverif
annotation language. Should
be able to reduce below 100
annotations per implementation.

