
1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1

Introduction to symmetric crypto

D. J. Bernstein

How HTTPS protects connection:

• Public-key encryption system

encrypts one secret message:

a random 256-bit session key.

• Public-key signature system

stops NSAITM attacks.

• Fast authenticated cipher

uses the 256-bit session key

to protect further messages.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

2

Some cipher history

1973, and again in 1974:

U.S. National Bureau of

Standards solicits proposals

for a Data Encryption Standard.

1975: NBS publishes IBM DES

proposal. 64-bit block, 56-bit key.

1976: NSA meets Diffie and

Hellman to discuss criticism.

Claims “somewhere over

$400,000,000” to break a DES

key; “I don’t think you can tell

any Congressman what’s going to

be secure 25 years from now.”

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

3

1977: DES is standardized.

1977: Diffie and Hellman

publish detailed design of

$20,000,000 machine to break

hundreds of DES keys per year.

1978: Congressional investigation

into NSA influence concludes

“NSA convinced IBM that a

reduced key size was sufficient”.

1983, 1988, 1993: Government

reaffirms DES standard.

Researchers publish new cipher

proposals and security analysis.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

4

1997: U.S. National Institute

of Standards and Technology

(NIST, formerly NBS) calls

for proposals for Advanced

Encryption Standard. 128-bit

block, 128/192/256-bit key.

1998: 15 AES proposals.

1998: EFF builds “Deep Crack”

for under $250000 to break

hundreds of DES keys per year.

1999: NIST selects five

AES finalists: MARS, RC6,

Rijndael, Serpent, Twofish.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7

5

2000: NIST, advised by NSA,

selects Rijndael as AES.

“Security was the most important

factor in the evaluation”—Really?

“Rijndael appears to offer an

adequate security margin. : : :

Serpent appears to offer a

high security margin.”

2004–2008: eSTREAM

competition for stream ciphers.

2007–2012: SHA-3 competition.

2013–2019: CAESAR competition.

2019–now: NISTLWC competition.

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7 8

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7 8

6

Main operations in AES:

add round key to block;

apply substitution box

x 7→ x254 in F256

to each byte in block;

linearly mix bits across block.

Extensive security analysis.

Even in a post-quantum world,

no serious threats to AES-256

in a strong security model,

“multi-target SPRP security”.

So why isn’t AES-256 the end

of the symmetric-crypto story?

7 8

7 8

7 8 9

7 8 9

7 8 9

8 9

8 9 10

8 9 10

8 9 10

9 10

9 10 11

9 10 11

9 10 11

10 11

10 11 12
...

10 11 12
...

10 11 12
...

11 12
...

11 12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

11 12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

11 12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

12
...

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

13

AES performance seems limited

in both hardware and software

by small 128-bit block size,

heavy S-box design strategy.

AES software ecosystem is

complicated and dangerous.

Fast software implementations

of AES S-box often leak

secrets through timing.

Picture is worse for high-security

authenticated ciphers. 128-bit

block size limits “PRF” security.

Workarounds are hard to audit.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

14

ChaCha creates safe systems

with much less work than AES.

More examples of how symmetric

primitives have been improving

speed, simplicity, security:

PRESENT is better than DES.

Skinny is better than

Simon and Speck.

Keccak, BLAKE2, Ascon

are better than MD5, SHA-0,

SHA-1, SHA-256, SHA-512.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

15

Authentication details

Standardize a prime p = 1000003.

Assume sender knows independent

uniform random secrets

r1 ∈ {0; 1; : : : ; 999999},
r2 ∈ {0; 1; : : : ; 999999},
...

r5 ∈ {0; 1; : : : ; 999999},
s1 ∈ {0; 1; : : : ; 999999},
...

s100 ∈ {0; 1; : : : ; 999999}.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

16

Assume receiver knows the same

secrets r1; r2; : : : ; r5; s1; : : : ; s100.

Later: Sender wants to send

100 messages m1; : : : ; m100,

each mn having 5 components

mn;1; mn;2; mn;3; mn;4; mn;5

with mn;i ∈ {0; 1; : : : ; 999999}.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000

and the message number n.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

17

e.g. r1 = 314159, r2 = 265358,

r3 = 979323, r4 = 846264,

r5 = 338327, s10 = 950288,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r1 + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 265358

mod 1000003)

+ 950288 mod 1000000 =

742451 + 950288 mod 1000000 =

692739.

Sender transmits

10 000006 000007 000000 000000 000000 692739.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

18

A MAC using fewer secrets

Instead of choosing independent

r1; r2; : : : ; r5; s1; : : : ; s100,

choose r; s1; s2; : : : ; s100.

Sender transmits 30-digit

mn;1; mn;2; mn;3; mn;4; mn;5

together with an authenticator

(mn;1r + · · ·+ mn;5r
5 mod p)

+ sn mod 1000000

and the message number n.

i.e.: take ri = r i in previous

(mn;1r1 + · · ·+ mn;5r5 mod p)

+ sn mod 1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

19

e.g. r = 314159, s10 = 265358,

m10 = 000006 000007 000000 000000 000000:

Sender computes authenticator

(6r + 7r2 mod p)

+ s10 mod 1000000 =

(6 · 314159 + 7 · 3141592

mod 1000003)

+ 265358 mod 1000000 =

953311 + 265358 mod 1000000 =

218669.

Sender transmits

authenticated message

10 000006 000007 000000 000000 000000 218669.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

20

Security analysis

Attacker’s goal:

Find n′; m′; a′ such that

m′ 6= mn′ but a′ =

(m′(r) mod p) + sn′ mod 1000000.

Here m′(x) =
P

i m
′[i]x i .

Obvious attack:

Choose any m′ 6= m1.

Choose uniform random a′.
Success chance 1=1000000.

Can repeat attack.

Each forgery has chance

1=1000000 of being accepted.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

21

More subtle attack:

Choose m′ 6= m1 so that

the polynomial m′(x)−m1(x)

has 5 distinct roots

x ∈ {0; 1; : : : ; 999999}
modulo p. Choose a′ = a.

e.g. m1 = (100; 0; 0; 0; 0),

m′ = (125; 1; 0; 0; 1):

m′(x)−m1(x) = x5 + x2 + 25x

which has five roots mod p:

0; 299012; 334447; 631403; 735144.

Success chance 5=1000000.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

22

Actually, success chance

can be above 5=1000000.

Example: If m1(334885) mod p

∈ {1000000; 1000001; 1000002}
then a forgery (1; m′; a1) with

m′(x) = m1(x) + x5 + x2 + 25x

also succeeds for r = 334885;

success chance 6=1000000.

Reason: 334885 is a root of

m′(x)−m1(x) + 1000000.

Can have as many as 15 roots

of (m′(x)−m1(x)) ·
(m′(x)−m1(x) + 1000000) ·
(m′(x)−m1(x)− 1000000).

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

25

Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

25

Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.

23

Do better by varying a′?

No. Easy to prove: Every choice

of (n′; m′; a′) with m′ 6= mn′
has chance ≤ 15=1000000

of being accepted by receiver.

Underlying fact: ≤ 15 roots

of (m′(x)−m1(x)− a′ + a1) ·
(m′(x)−m1(x)− a′ + a1 + 106) ·
(m′(x)−m1(x)− a′ + a1 − 106).

Warning: very easy to break

the oversimplified authenticator

(mn[1] + · · ·+ mn[5]r4 mod p)

+ sn mod 1000000:

solve m′(x)−m1(x) = a′ − a1.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

25

Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

25

Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.

24

Scaled up for serious security:

Poly1305 uses 128-bit r ’s,

with 22 bits cleared for speed.

Adds sn mod 2128.

Assuming ≤ L-byte messages:

Each forgery succeeds for

≤ 8 dL=16e choices of r .

Probability ≤ 8 dL=16e =2106.

D forgeries are all rejected

with probability

≥ 1− 8D dL=16e =2106.

e.g. 264 forgeries, L = 1536:

Pr[all rejected] ≥ 0:9999999998.

25

Authenticator is still secure

for variable-length messages,

if different messages are

different polynomials mod p.

Split string into 16-byte chunks,

maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers

in
˘

1; 2; 3; : : : ; 2129
¯

.

Multiply first chunk by r ,

add next chunk, multiply by r ,

etc., last chunk, multiply by r ,

mod 2130 − 5, add sn mod 2128.

