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Split string into 16-byte chunks,

maybe with smaller final chunk;

append 1 to each chunk;

view as little-endian integers

in
˘

1; 2; 3; : : : ; 2129
¯

.

Multiply first chunk by r ,

add next chunk, multiply by r ,

etc., last chunk, multiply by r ,

mod 2130 − 5, add sn mod 2128.


