Quantum cryptanalysis

Daniel J. Bernstein

Main question In

quantum cryptanalysis:
What is the most efficient
quantum algorithm

to attack this cryptosystem?

(For comparison, main question
In non-quantum cryptanalysis:
What is the most efficient
non-quantum algorithm

to attack this cryptosystem?)

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)
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"Quantum algorithm” Quantum computer type 1 (QC1):
means an algorithm that contains many “qubits’;

a quantum computer can run. can efficiently perform

"NOT gate”, “Hadamard gate”,

l.e. a sequence of instructions, ) o )
controlled NOT gate”, “T gate”.
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“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
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Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.
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Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .
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Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any possible physica

laws of quantum physics computer can compute efficiently.

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .
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Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.
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Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.
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Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

State of a non-quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
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Quantum computer type 3 (QC3): State of a non-quantum computer

efficiently computes anything Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
General belief: any QC2 is a QC3. e.g.: (1,1,1).
Argument for belief:

that any possible physica
computer can compute efficiently.

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.
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efficiently computes anything Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

that any possible physica
computer can compute efficiently.

e.g.. (0,0,0).
General belief: any QC2 is a QC3. e.g.. (1,1,1).
Argument for belief: eg.: (0,1,1).

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.
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State of a non-quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.: (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:
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0,0,0,000,1,1,0,0,0,
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0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum comput

Data stored in 3 qubits:
a list of 8 numbers, not all :

e.g.: [3,1,4,1,5,9,2,6].



State of a non-quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.

e.g.: [3,1,4,1,5,9,2,6].



State of a non-quantum computer

State of a quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.:
e.g.:

3,1,4,1,5,9,2, 6]

—2,7,—1,8,1,-8,—-2,8].



State of a non-quantum computer

State of a quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.:
e.g.:
e.g.:

3,1,4,1,5,9,2, 6]
-2,7,-1,8,1, -8, -2, 8].

0,0,0,0,0,1,0,0].



State of a non-quantum computer State of a quantum computer

Data ( “state”) stored in 3 bits: Data stored in 3 qubits:

a list of 3 elements of {0, 1}. a list of 8 numbers, not all zero.
e.g.. (0,0,0). eg.: [3,1,4,1,5,9,2,6].

e.g.: (1,1,1). eg.: [-2,7,-1,8,1,—8,-2,8].

e.g.: (0,1,1). e.g.: [0,0,0,0,0,1,0,0].

Data stored in 64 bits: Data stored in 4 qubits: a list of

a list of 64 elements of {0, 1}. 16 numbers, not all zero. e.g.:

eg.: (1,1,1,1,1,0,0,0,1, 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9, 3].

0,0,0,0,0,0,1,1,0,0,0,
0,1,0,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0, 1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).




State of a non-quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.



State of a non-quantum computer

Data ( “state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.
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State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quan

Can simply look a
Cannot simply loo
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3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
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a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.




State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.



State of a quantum computer Measuring a quantum computer
Data stored in 3 qubits: Can simply look at a bit.

a list of 8 numbers, not all zero. Cannot simply look at the list
e.g.: [3,1,4,1,5,9,2,6]. of numbers stored in n qubits.

eg.: [-2,7,-1,8,1,—8,—2,8].

_ Measuring n qubits
e.g.: [0,0,0,0,0,1,0,0].

e produces n bits and

Data stored in 4 qubits: a list of e ‘collapses’ the state.
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.




State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.

e.g.: [3,1,4,1,5,9,2,6].
eg: [-2,7,-1,8,1, -8, —2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l] then



State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.



A quantum computer

red In 3 qubits:
8 numbers, not all zero.
1,4,1,5,9,2,6].
2,7,—1,8,1,—8,-2,8].
0,0,0,0,1,0,0].
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,5,9,2,6,5,3,5,8,9,7,9,3].

red In 64 qubits:

004 numbers, not all zero.
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numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.. Sa
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Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l] then

“Collapse”: New state is all zeros

except 1 at position q.

e.g.: Say 3 qubits
[1,1,1,1,1,1,1, 1]
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Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with
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ility 1/8;
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orobability 1/8.



Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
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ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
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ility 1/8;
ility 1/8;

orobability 1/8.

“Quantum RNG.”



Measuring a quantum computer e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Can simply look at a bit.
Cannot simply look at the list Measurement produces

of numbers stored in n qubits. 000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;

Measuring n qubits

e produces n bits and

e ‘collapses” the state.

It n qubits have state 101 = 5 with probability 1/8;
|30, a1, ..., agn_1] then 110 = 6 with probability 1/8;
measurement produces q 111 = 7 with probability 1/8.

with probability |aq\2/zr \ar\Q- “Quantum RNG.”

“Collapse”: New state is all zeros |
Warning: Quantum RNGs sold

except 1 at position q. |
today are measurably biased.
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Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi
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111 = 7 with probability 1/8.

“Quantum RNG.”
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e.g.: Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi
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ility 1/8;
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ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”
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e.g.: Say 3 qubits have stat:
13,1,4,1,5,9,2,6].



e.g.: Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably
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e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

10



e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces
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e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces
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e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
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olge
olge

olge
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e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces
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e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].
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e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6]. 0,0,0,0,0,1,0,0].
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability O;
111 = 7 with probability 36/173. 111 = 7 with probability 0.
5 1s most likely outcome.




e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6]. 0,0,0,0,0,1,0,0].
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability 0;
111 = 7 with probability 36/173. 111 = 7 with probability O.
5 is most likely outcome. b Is guaranteed outcome.
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e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with
001 = 1 with

orobability 0;
orobability 0;

010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;
101 = 5 with probability 1;
110 = 6 with probability O;
111 = 7 with probability O.

b Is guaranteed outcome.
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11
e.g.: Say 3 qubits have state

0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
3,1,4,1,5,9,2,6
1,3,1,4,9,5,6,2
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e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTp gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

ubits:



e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

ubits:

12



e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;
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10,0,0,1,0
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0,0,1,0,0] 101

0,0,0,1,0] 110 —

0,0,0,0,1] 111

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT (CNQOT) gates

€.g. ClNOT():
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:

(92,91, 90) — (g2,91. 90 D q1).

€.g. CQNOT():
3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. C()NOTQZ
3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

flipping bit 0 /f bit 1 is set; i.e.,
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Toffoli gates More shuffling
Also known as CCNOT gates: Combine NOT, CNOT, Toffol
controlled-controlled-NOT gates. to build other permutations.
e.g. CHC{NOTyp: e.g. series of gates to
3,1,4,1,5,9,2,6] — rotate 8 positions by distance 1:
3,1,4,1,5,9,6,2]. 31415926
Operation after measurement: CoC1NOT>
(92, g1, q0) — (g2, q1, G0 © G192). 314065921

CoNOTy >< ><
€.g. COC1NOT2: 36415120
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1 NOTo >< >< >< ><
T e . 6 3141592
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rotate 8 positions by distance 1:
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convot, X X

36415129

NO Ty >< >< >< ><
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Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

conoT, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17



More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

X X

364151209

X XX X

6 3141592

CoNOT

NOT,

16

17
Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
a,b,c, dl—

a+c,b+d,a—c, b—d

R

1

KK

—10l



uffling

> NOT, CNOT, Toffol
other permutations.

s of gates to
positions by distance 1:

314159 26

P

R

6 3141592

1

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a— b].

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
a,b,c, dl—

a+c,b+da—c b—d
RSK T RK

2 —1 15 3

17

Some us

Hadama

3 1
N

X

4
\

>

2
7



NOT, Toffoli
mutations.

1O
by distance 1:

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2 6

XL IXE X IX

4 2 5 3 14 —4 8 —4
Hadamards:

a,b,c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2 6‘3

17

Some uses of Had

Hadamardg, NOT,

4 N
2><4 3><5 -
o XL
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Some uses of Hadamard gates
Hadamardg, NOTg, Hadamardp:

XX

5
\

X

—2 10 —18 4 —12

17

Hadamard gates
Hadamardp:

la, b] — [a+ b,a — b].

Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]




Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2
X IXE X IX
4 2 5 3 14 —4 8
Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2

6
\

—4

|
3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 T

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“Multiplied each amplitude by 2."
This i1s not physically observable.

18



Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2 6
XL IXE X TX
4 2 5 3 14 —4 8 —4

Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2 6‘3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T—414—4T

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“Multiplied each amplitude by 2."
This i1s not physically observable.

“Negated amplitude if gg is set.”
No effect on measuring now.

18



rd gates
rdo:

[a+ b,a— b].

4 1 5 9 2 06
X IXT X
5 3 14 —4 8 —4
rdy:
1] —

»+—d,a——c,b——cﬂ.

K1 K]

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4
X X X X
2 4 3 5 —4 14 —4
X | \X\ | X| \X\
6 -2 8 —2 10 —18 4 —12

“"Multiplied each amplitude by 2."
This i1s not physically observable.

"Negated amplitude if qg is set.”
No effect on measuring now.

Fancier
"Negate
Assumes

CoC1N(

Hadam:

NOT

Hadam:

CoCq N



Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 T

XXX

—2 10 —18 4 —12

Xl 1]

>
>

>
>

2 4
X |
6 —2

"Multiplied each amplitude by 2."
This i1s not physically observable.

“Negated amplitude if gg is set.”
No effect on measuring now.

18

Fancier example:
“"Negate amplitud
Assumes g» = O:

31
CoCiNOT>

Hadamard»

LW—Ww

NG\ U (N

NOT»,

Hadamard»

S ——W

CoCi{NOT>

(@)
N



N

LW ———O

17
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Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4

X X X X

> 4 3 5 —4 14 —4 8

XL IXT X IX

6 —2 8 -2 10 —18 4 —-12
“Multiplied each amplitude by 2."

This I1s not physically observable.

"Negated amplitude if qg is set.”
No effect on measuring now.

Fancier example:

“Negate amplitude if gggy I

Assumes g» = O:

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

3141

|
3

3 14—

1

4

“ancilla” ¢

0
N
00

1 4713

3

 PREE

62380

6 2 3—-2

0
\
//
0
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Some uses of Hadamard gates Fancier example:

Hadamardg, NOTg, Hadamardy: Negate amplitude if ggqy Is set.

Assumes go» = 0: “ancilla” qubit.

3 1 4 1 5 9 2 6

X IXT X IX 31410000
4 2 5 3 14 -4 8 —4 CoCiNOT> ><
>< >< >< >< 31400001
2 4 3 5 —4 14 —4 8 Hadamard» ‘ ‘
X IXT X IX 3L8LS L4
6 —2 8 -2 10 —18 4 —-12 NOT>5

3°1°4=—13 1 41

“Multiplied each amplitude by 2." Hodarmard ‘ ‘
This I1s not physically observable. ° ; 6280000 -2
“Negated amplitude if qg Is set.” CoCiNOT>

No effect on measuring now. 6 28-20000




es of Hadamard gates

rdo, NOTo, HadamardO:

4 1 5 9 2 6
X IXT X
5 3 14 —4 8§ —4

X X X

3 5 —4 14 —4 8

XL IXT X

8 —2 10 —18 4 —12
led each amplitude by 2."

ot physically observable.

d amplitude if gg is set.”
t on measuring now.

18

Fancier example:
"Negate amplitude if ggqg; Is set.”
Assumes g» = O:

“ancilla” qubit.

31410000

CoCi{NOT>

31400001

Hadamard> ‘

31413 1 4-1

NOT»,

3 14—

Hadamard> ‘

623000 0-2

CoCi{NOT>

31 4°1

6 2 3-20000

19

Affects |
amplituc
13,1,4,]
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amard gates Fancier example: Affects measurems
" Hadamardy: Negate amplitude if q-0q1 IS se.t. amplitude around
Assumes g» = 0: “ancilla” qubit. 3,1,4,1] — [1.5,.

2

5 9 6
X | X 31410000

14 -4 8 —4 CoCiNOT>

X X 31400>0<01

-4 14 —4 8 Hadamard» ‘W‘

X X 371741773104 —1

10 —-18 4 —12 NOT,
31 4-1314'1
litude by 2."
MpHTUae by Hadamard» ‘ ‘
lly observable. 627807000 —2
de if gg Is set.” CoCi{NOT>

uring now. 6 2 8—-20 0 00




able.

set.”
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Fancier example:

"Negate amplitude if ggqg; Is set.”

Assumes go» = 0: “ancilla” qubit.

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

3141 31 4-1
T14—314T

623000 0-2

6 2 3-20000

19

Affects measurements: “Nej

amplitude around its averag
13,1,4,1] — [1.5,3.5,0.5, 3.



Fancier example:

"Negate amplitude if ggqgy is set.”

Assumes go» = 0: “ancilla” qubit.

CoCiNOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

314131 4-1
T14—314T

623000 0-2

6 2 320000

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

20



Fancier example:
"Negate amplitude if ggqgy is set.”
Assumes go» = 0: “ancilla” qubit.

31410000

CoCiNOT>
31400001

Hadamard» ‘ ‘
3’14713 14-1

NOT»,
371 4—-13 141

Hadamard» ‘ ‘
628000 0-2

CoCi{NOT>
6 2 3—20 0 0 0

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 0 O
W X I IX) X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
—4-14-2 0 0 0 0 O
W KK RK
—-6—-14-2-140 0 0 O

20



example:
amplitude if ggqgy is set.”

> go = 0: “ancilla” qubit.

31410000

)TH
31400001

. R
3’14131 4-1

31 4-13 141

| BRERED
6280 000-2

)TH
6 23—-20000

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5,3.5].

31 4 1 0 0 O

W X IX) X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

-9 5 —-1-10 0 O

W XL IXT X IX
14—-2 0 0 0 O

W KK RK
6-14-2-140 0 O

20

Simon's

Assumpt

e Given
can ef

e Nonze

o f(u) =
e f has

Goal: Fi



2 if gogy Is set.”
“ancilla” qubit.

4 1 0000

4 00 001

B

413 1 4-1
4—-13 1 41

8000 0-2

8—-20 000

19

Affects measurements: “Negate
amplitude around its average.”

3,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O
W X IXI X [X
4 2 5 3 0 0 O
W DRKT RK
RENRER
.—95—1—10 0 O
W X IXT X [X
—4-14-2 0 0 0 O
W ORK | RK
—6—-14-2—-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:

e Given any u € {
can efficiently cc

e Nonzero s € {0,

o f(u)="f(uds)

e f has no other ¢

Goal: Figure out ¢



19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5,3.5].

31 4 1 0 0 O

W X IX] X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

-9 5 —-1-10 0 O

W XL IXT X IX
14—-2 0 0 0 O

W KK RK
6-14-2-140 0 O

20

Simon’s algorithm

Assumptions:

e Given any u € {0,1}",
can efficiently compute f(

e Nonzero s € {0,1}".

o f(u)="f(uds) for all u.

e f has no other collisions.

Goal: Figure out s.



Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O

W X IX1 X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

.—95—1—10 0 O
W XL IXT X IX
14-2 0 0 0 O

W ORK | RK
6-14-2-140 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e  has no other collisions.

Goal: Figure out s.

21



Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O

W X IX1 X [X
4 2 5 3 0 0 O

W DRK T TRK
RENRER

-9 5 —-1-10 0 O

W XL IX]IX) X
(‘)OO

il ‘>K>K‘

6-14-2-14 0 0 O

O——mO ——O —O —O —0O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.



Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 0 O
W X I X)X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
4—-14-2 0 (‘) 0 O(‘)

il ‘>K>K‘

6-14-2-140 0 0 O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.



neasurements: “Negate
le around Its average.”
| —]1.5,3.5,0.5,3.5].

1 4 1 0 0 0 O
<X IXT IX
KK T KK

[T

5 —‘1 —‘1 0 0 0 O
<X IXT IX
—14 -2 0 (‘) 0 O (‘)

KK

—14-2-140 0 0 O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)y="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example

Step 1.
0,

O O 0O O O O o W
e e
I

This exa
with 3-b



20 21

ants: “Negate Simon'’s algorithm Example of Simon
;tSB a(;/e5ra3g:. Assumptions: Step 1. Set up pu
5,0.5,3.5] e Given any u € {0,1}", 1, 0, 0,0, 0, 0, (

can efficiently compute f(u). 0,0 0 000, (
L0000 g Nonzero s € {0, 1}, 0, 0,0, 0, 0, 0, (
‘ ‘><‘ ‘><‘ o f(u)=Ff(uds) for all u. 0,0,0 00,0, (
3 0 0 00 e f has no other collisions. 0,0, 0,0 0,0, (
‘ ‘ >’<>’< ‘ Goal: Figure out s 0,0..0,0,°6,0,
10000 | | 0, 0, 0, 0, 0, 0, ¢
‘ ‘ ‘ ‘ ‘ Non-quantum algorithm to find s: 0.0 0 0 0 O, (
-1 0 0 0 O compute f for many inputs, | |

. . This example is fo

‘ hope to find collision. | o
0 0 0 0 0 with 3-bit input at
‘ ‘ >K>4< ‘ Simon's algorithm finds s with
14070750 0 ~n quantum evaluations of f.




20 21

compute f for many inputs,

. . This example is for a functic
hope to find collision. | o |
with 3-bit input and 3-bit ol
Simon’s algorithm finds s with

~n quantum evaluations of f.

rate Simon'’s algorithm Example of Simon's algorith
: Assumptions: Step 1. Set up pure zero st:
| e Given any u € {0, 1}", 1, 0, 0,0, 0,0, 0, 0,
can efficiently compute f(u). 0,0000,0,0,HQ0,
0 e Nonzero s € {0, 1}". 0, 0, 0, 0, 0, 0, 0, 0,
‘>< o f(u)="f(uds) forall u. 0,0,0,0,0,0, 0, 0,
;>T< e f has no other collisions. 0, 0,0,0,0,0, 0,0,
0 Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0,0,0,0,0,0, 0,
‘ Non-quantum algorithm to find s: 0.0 0 0 0 0 0 O.
0
X
0

O——OO —O — O — O —0O




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 1. Set up pure zero state:
0, 0, O, 0,

I e

e e
I
I e

O O 0O O o0 o o
O OO O O O O
e e e
e

0,

This example is for a function f
with 3-bit input and 3-bit output.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 2.0. Hadamardp:

1,1, 0,0, 0,0, 0, O,
0, 0,0, 0,0,0,0, 0O,
0, 0,0,0,0,0, 0, O,
0, 0,0,0,0,0, 0, O,
0, 0,0, 0,0,0, 0, O,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
0, 0,0, 0,0,0,0, 0.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 2.1. Hadamardj:

1,11, 1,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0O,
0, 0,0,0,0,0, 0, O,
0, 0,0,0,0,0, 0, O,
0, 0,0, 0,0,0, 0, O,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
0, 0,0, 0,0,0,0, 0.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 2.2. Hadamards:

O OO O OO O -
O O OO OO O
O O OO O O O
e e
e
O O OO0 OO O
O O OO O O O
O OO O OO O+

Each column is a parallel universe.
Step 3 will apply the function f (a
specific function in this example),
computing f(u) in universe u.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 3a. CogNOTj3:

O OO OO O O
O OO OO O Rr O
O OO O O O O
I e
O OO OO O O
O OO OO O Rr O
O OO O O O O
O OO OO O Rr o

Each column is a parallel universe
performing its own computations.



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3b. More entry shuffling:

O O OO0 O o O K
O OO OO O Rr O

O O OO0 O o o K
O O OO0 O o +rH O

O OO+ OO O O
O O H OO O O O
O OO H O O O O
O O H OO O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3c. More entry shuffling:

O O OO0 O r OO
O O OO r O O O

O OO R OO O O
O O OO O O O
O H OO OO O O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3d. More entry shuffling:

O O OO0 O r OO
O OO OO O Rr O

O OO R OO O O
H O O O O O O O
O H OO OO O O
O O OO O O O

Each column is a parallel universe
performing its own computations.

22



Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3e. More entry shuffling:

O O OO0 O r OO
O OO OO O Rr O

O OO R OO O O
O R OO OO O O
O H OO O O O O
O OO+ OO O O

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.
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Example of Simon’s algorithm

Step 3f. More entry shuffling:
0,0 000, 1,D0, 0,

Each column is a parallel universe
performing its own computations.
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e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
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Simon’s algorithm finds s with
~n quantum evaluations of f.
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Step 3i. More entry shuffling:
0,00 0,00, 1,0,

Each column is a parallel universe
performing its own computations.
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Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.
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Example of Simon’s algorithm

Step 3j. Final entry shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.
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Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3j. Final entry shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.
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Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 4.0. Hadamardp:
e Given any u € {0,1}", 0,0,0,0,0, 0,0, 0,
can efficiently compute f(u). 0,0 1,1, 0,0, 1, 1,
e Nonzero s € {0,1}". 0,0 000,00, 0,
o f(u)="Ff(uds) for all u. 0,0, 1,10 0 1, 1,
e f has no other collisions. 1.1.0,0 1 1, 0 0
Goal: Figure out s. U, 0,0,0,0,0,0, 0,
0,0, 0,0,0,0,0, 0,
Non-quantum algorithm to find s: 1.1.0 0 1.1 0 0.

compute f for many inputs,

. . Notation: 1 means —1.
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.




Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.
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Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.
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Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0, 0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2, 0, 2.
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Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21
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Example of Simon’s algorithm

Step 4.2. Hadamards:

N O O NN O DN O
I e
N ©O O N DN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o

N O O N
N O O N

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.
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Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0, 0,0, 0,0, O,
2, 0,200 20,2
0, 0,0, 0,00, 0, O,
2, 0,20 0,2 0,2,
2, 0,2, 00,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0O,
2, 0,2,0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.
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Step 4.2. Hadamards:
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o o N

e e e
N O O N N O N
e
e e e

N O O N

0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

Repeat to figure o
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Example of Simon’s algorithm

Step 4.2. Hadamards:
0, 0, 0, 0, 0, 0,

N O N
No N O

e e

N O O N NONO
o O N

e e
N O O NN O N
e e
R e

N O O N

0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

Repeat to figure out 101.



Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, 0O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.
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Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, 0O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.
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Repeat to figure out 101.
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Example of Simon’s algorithm
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Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 44159Vt mod p.

Easy to compute discrete logs.
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0, 0, 2, 0, 2,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 2,0, 2,
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vector orthogonal to 101.
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Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general 4+ operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.
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Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.
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Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y75 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.
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Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"



Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y75 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128
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Grover's algorithm
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Goal: Figure out s.
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Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output 0.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2

quantum evaluations of f.
e.g. 2°% instead of 2128

Start from uniform superpos
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Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2

quantum evaluations of f.
e.g. 2°% instead of 2128

24

Start from uniform superposition
over n-bit strings u: each a, = 1.

25
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Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128
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Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,

hope to find output 0. Step 2: “Grover diffusion” .

el Negate a around Its average.
Success probability is very low

until #tries approaches 2" This is also fast.

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128
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Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,

hope to find output 0. Step 2: “Grover diffusion” .

el Negate a around Its average.
Success probability is very low

until #tries approaches 2" This is also fast.

Repeat Step 1 + Step 2

Grover's algorithm takes only on/2 05n .-
about 0.58 - 2Y°" times.

quantum evaluations of f.

e.g. 2°% instead of 2128




Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

24

25
Start from uniform superposition

over n-bit strings u: each a, = 1.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
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Start from uniform superposition Normalized graph of u+— a,

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after O steps:

b, = —ay if f(u) =0, 1Oy
b, = a, otherwise. j
ind s: This is fast if f is fast. o5l

Step 2: “Grover diffusion” .

" Negate a around Its average. 00
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y 21/ Repeat Step 1 + Step 2 05"

about 0.58 - 2927 times.

Measure the n qubits. 10!
With high probability this finds s.




Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.
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Negate a around its average.
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Step 1: Set a < b where
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b, = a, otherwise.
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Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5+ -

OO T —

-0.5+ -

-1.0




Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 2 x (Step 1 + Step 2):
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-0.5+

-1.0
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 3 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 4 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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Normalized graph of u+— ay
for an example with n = 12
after 5 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.
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for an example with n = 12
after 6 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 7 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 8 x (Step 1 + Step 2):
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Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 9 x (Step 1 + Step 2):
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25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 10 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 11 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 12 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 13 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 14 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 15 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 16 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 17 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 18 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 19 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 20 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 25 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. oo '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 30 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. oY ) '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+ -

OO N E—————————— -

-0.5+ -

-1.0

Good moment to stop, measure.



25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 40 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 45 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around its average. 0.0
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.
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25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 60 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00— |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 70 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 80 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 90 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.




Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

10710 ) o

Very bad stopping point.
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Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-1.0

Very bad stopping point.

u — a, Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) ay for non-roots u.



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.
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Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

26

Very bad stopping point.

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

27



Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.
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27
u +— a, 1s completely described

by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.
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Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,

CCNOT, and measurement
on a quantum computer.
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u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.
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Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.
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Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.
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Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

28

This subset includes the fast
algorithms known for many
computations. Learn how tc
design non-quantum algoritt



Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!
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Many more quantum algorithms

2021: Your CPU consists of
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Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S’
delete one elt, insert one elt.

Non-quantum setup cost o;

then inner-outer loops o - (2" /5)?.

Quantum: o; then o1/2.(2"/0).

Take o to minimize o + 2" /o1/2.
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Kuperberg: For dihedral group,

reduce the extra computation
at some cost in f evaluations.
Total cost Is superpolynomial

but subexponential: 20(v/n)
evaluations of f 4+ overhead.

Shor already handles some easy

subgroups of the dihedral group.
For hard cases, Kuperberg solves
the “hidden-shift problem":

find s in a commutative group
given two functions fp, f1

satisfying fi(u) = fo(u + s).
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