Quantum cryptanalysis

Daniel J. Bernstein

Main question In

quantum cryptanalysis:
What is the most efficient
quantum algorithm

to attack this cryptosystem?

(For comparison, main question
In non-quantum cryptanalysis:
What is the most efficient
non-quantum algorithm

to attack this cryptosystem?)

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

n cryptanalysis

. Bernstein

estion In

1 cryptanalysis:

the most efficient

1 algorithm

k this cryptosystem?

nparison, main question
uantum cryptanalysis:
the most efficient
ntum algorithm

k this cryptosystem?)

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

l.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantur
contains
can effic
‘NOT g

“control

lysis

lysis:
efficient
N

tosystem?

main question
ryptanalysis:
efficient
rithm

tosystem?)

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantum compute
contains many “q|

can efficiently per
"NOT gate”, "Ha
“controlled NOT

Flon

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantum computer type 1 (
contains many “qubits”;

can efficiently perform
"NOT gate”, “Hadamard gz
“controlled NOT gate”, “T

"Quantum algorithm” Quantum computer type 1 (QC1):
means an algorithm that contains many “qubits’;

a quantum computer can run. can efficiently perform

"NOT gate”, “Hadamard gate”,

l.e. a sequence of instructions,) o)
controlled NOT gate”, “T gate”.

where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

“Quantum algorithm”
means an algorithm that
a quantum computer can run.

I.e. a sequence of instructions,
where each instruction is
In a quantum computer’s
supported Instruction set.

How do we know which
instructions a quantum
computer will support?

(Something to think about:
Do we really know the answer
for non-quantum computers?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

im algorithm”
n algorithm that

Im computer can run.

juence of instructions,
ych Instruction Is
ntum computer’s
d Instruction set.

 we know which
ions a quantum
er will support?

ing to think about:
cally know the answer
quantum computers?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions

to compute “Toffoli gate”;
“Simon’s algorithm”;
“Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantur
stores a
efficientl
laws of ¢
with as

This i1s t
quantun

by 1980
paper af

m
m that

ter can run.

Instructions,
“tion Is
puter’s
lon set.

 which
antum
pport?

nk about:
' the answer
“omputers?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm” ; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum compute
stores a simulated
efficiently simulate
laws of quantum g
with as much acclt

This Is the origina
quantum compute

by 1980 Manin (E
paper appendix), -

1S,

er

?)

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU
isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (
stores a simulated universe:
efficiently simulates the
laws of quantum physics
with as much accuracy as di

This Is the original concept
quantum computers introdu
by 1980 Manin (English ver:

paper appendix), 1982 Feyn

Quantum computer type 1 (QC1):

contains many “qubits”;
can efficiently perform
"‘NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced

by 1980 Manin (English version:
paper appendix), 1982 Feynman.

Quantum computer type 1 (QC1):
contains many “qubits”;

can efficiently perform

"‘NOT gate”, “Hadamard gate”,
“controlled NOT gate”, “T gate”.

Making these instructions work
is the main goal of quantum-
computer engineering today.

Combine these instructions
to compute “Toffoli gate”;
. “Simon’s algorithm”;

. “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn't QCI1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe;
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

n computer type 1 (QC1):
many “qubits’;
lently perform

ate”, "Hadamard gate’,
led NOT gate”, “T gate”.

these instructions work
1ain goal of quantum-
er engineering today.

> these instructions
ute “Toffoli gate”;
1on’'s algorithm'™;
or's algorithm™ ; etc.

belief: Traditional CPU

1; e.g. can't factor quickly.

Quantum computer type 2 (QC2):
stores a simulated universe:
efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced

by 1980 Manin (English version:
paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

4

Quantur
efficientl
that any
compute

r type 1 (QC1):
1bits” :

orm

damard gate’,
rate’, T gate’.

tructions work
of quantum-
ering today.

tructions
|l gate’’;
rithm'

hm" : etc.

ditional CPU

1't factor quickly.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced

by 1980 Manin (English version:
paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum compute
efficiently comput:
that any possible |
computer can con

QC1):

1te
gate” .

work
Im-

ay.

PU

quickly.

Quantum computer type 2 (QC2):

stores a simulated universe:
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced

by 1980 Manin (English version:
paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (
efficiently computes anythin

that any possible physica
computer can compute effic

4 5

Quantum computer type 2 (QC2): Quantum computer type 3 (QC3):
stores a simulated universe; efficiently computes anything
efficiently simulates the that any possible physica

laws of quantum physics computer can compute efficiently.

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.
Partial proof: see, e.g.,

2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced
by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

Quantum computer type 2 (QC2):

stores a simulated universe;
efficiently simulates the
laws of quantum physics

with as much accuracy as desired.

This is the original concept of
quantum computers introduced

by 1980 Manin (English version:
paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,
2011 Jordan—Lee—Preskill
“Quantum algorithms for
quantum field theories" .

Quantum computer type 3 (QC3):
efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QC3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QCI.

n computer type 2 (QC2):

simulated universe;
y simulates the
juantum physics

much accuracy as desired.

he original concept of

' computers introduced
Manin (English version:
ypendix), 1982 Feynman.

belief: any QC1 is a QC2.

roof: see, e.g.,
dan—Lee—Preskill
im algorithms for
1 field theories™ .

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

State of

Data (
a list of

e.g.. (0,

r type 2 (QC2): Quantum computer type 3 (QC3): State of a non-qu:

umhverse; e;flaently con?lfluteiar?ytwmg Data (“state”) st
s t -e that any possible physica N . list of 3 element
hysics computer can compute efficiently.

o e.g.. (0,0,0).
ifacy as desired. General belief: any QC2 is a QC3.

| concept of Argument for belief:

rs Introduced any physical computer must
nglish version: follow the laws of quantum

1982 Feynman. physics, so a QC2 can efficiently
, QC1 is a QC2. simulate any physical computer.
e.g., General belief: any QC3 is a QC1.
Preskill Argument for belief:

ims for look, we're building a QC1.

ories .

QC2): Quantum computer type 3 (QC3): State of a non-quantum con

efficiently computes anything Data (“state”) stored in 3 b

a list of 3 elements of {0, 1}

that any possible physica
computer can compute efficiently.

. e.g.: (0,0,0).

asired. . _
General belief: any QC2 is a QCS3.

of Argument for belief:
ced any physical computer must
Sion: follow the laws of quantum
man. physics, so a QC2 can efficiently
QC2. simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.
Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

6

5 6
Quantum computer type 3 (QC3): State of a non-quantum computer

efficiently computes anything Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.
e.g.. (0,0,0).
General belief: any QC2 is a QC3. e.g.: (1,1,1).
Argument for belief:

that any possible physica
computer can compute efficiently.

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

5 6
Quantum computer type 3 (QC3): State of a non-quantum computer

efficiently computes anything Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

that any possible physica
computer can compute efficiently.

e.g.. (0,0,0).
General belief: any QC2 is a QC3. e.g.. (1,1,1).
Argument for belief: eg.: (0,1,1).

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3): State of a non-quantum computer

efficiently computes anything Data (“state”) stored in 3 bits:

a list of 3 elements of {0, 1}.

that any possible physica
computer can compute efficiently.

e.g.. (0,0,0).
General belief: any QC2 is a QC3. e.g.. (1,1,1).
Argument for belief: eg.: (0,1,1).

any physical computer must Data stored in 64 bits:

follow the laws of quantum a list of 64 elements of {0, 1}.

physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.
Argument for belief:
look, we're building a QC1.

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physica
computer can compute efficiently.

General belief: any QC2 is a QCS3.

Argument for belief:

any physical computer must
follow the laws of quantum
physics, so a QC2 can efficiently
simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:
look, we're building a QC1.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg.: (1,1,1).

eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

n computer type 3 (QC3):

y computes anything

- possible physica
r can compute efficiently.

belief: any QC2 is a QC3.

1t for belief:

sical computer must

1e laws of quantum

so a QC2 can efficiently
any physical computer.

belief: any QC3 is a QC1.

1t for belief:
're building a QC1.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.: (0,0,0).

eg.: (1,1,1).

eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of

Data stc
a list of
e.g.: [3,

r type 3 (QC3):

2s anything

ohysica
ipute efficiently:.

vy QC2 is a QC3.

of:

uter must
quantum

can efficiently
cal computer.

vy QC3 is a QC1.

of:
g a QCI.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg.: (1,1,1).

eg.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,0,00,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantul

Data stored in 3 ¢
a list of 8 number

QC3):

iently.

' QC3.

ntly
Iter.

' QCL.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.: (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum comput

Data stored in 3 qubits:
a list of 8 numbers, not all :

e.g.: [3,1,4,1,5,9,2,6].

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.

e.g.: [3,1,4,1,5,9,2,6].

State of a non-quantum computer

State of a quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.:
e.g.:

3,1,4,1,5,9,2, 6]

—2,7,—1,8,1,-8,—-2,8].

State of a non-quantum computer

State of a quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.:
e.g.:
e.g.:

3,1,4,1,5,9,2, 6]
-2,7,-1,8,1, -8, -2, 8].

0,0,0,0,0,1,0,0].

State of a non-quantum computer State of a quantum computer

Data (“state”) stored in 3 bits: Data stored in 3 qubits:

a list of 3 elements of {0, 1}. a list of 8 numbers, not all zero.
e.g.. (0,0,0). eg.: [3,1,4,1,5,9,2,6].

e.g.: (1,1,1). eg.: [-2,7,-1,8,1,—8,-2,8].

e.g.: (0,1,1). e.g.: [0,0,0,0,0,1,0,0].

Data stored in 64 bits: Data stored in 4 qubits: a list of

a list of 64 elements of {0, 1}. 16 numbers, not all zero. e.g.:

eg.: (1,1,1,1,1,0,0,0,1, 3,1,4,1,5,9,2,6,5,3,5,8,9,7,9, 3].

0,0,0,0,0,0,1,1,0,0,0,
0,1,0,0,1,0,0,0,0,0,1,
1,0,1,0,0,0,1,0,0,0, 1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

State of a non-quantum computer

Data (“state”) stored in 3 bits:
a list of 3 elements of {0, 1}.
e.g.. (0,0,0).

eg: (1,1,1).

e.g.: (0,1,1).

Data stored in 64 bits:

a list of 64 elements of {0, 1}.
eg: (1,1,1,1,1,0,0,0,1,
0,0,0,000,1,1,0,0,0,
0,10,0,1,0,0,0,0,0,1,
,0,1,0,0,0,1,0,0,0,1,
0,0,1,1,1,0,0,1,0,0,0,
1,1,0,1,1,0,0,1,0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

a2 _ non-quantum computer 6 State of a quantum computer 7 Measuri
state”) stored in 3 bits: Data stored in 3 qubits: Can sim
3 elements of {0, 1}. a list of 8 numbers, not all zero. Cannot
0,0). eg.: [3,1,4,1,5,9,2,6] of numb
1,1). eg.: [-2,7,-1,8,1,—8,-2,8].

1,1). e.g.: [0,0,0,0,0,1,0,0].

red in 64 bits: Data stored in 4 qubits: a list of

64 elements of {0, 1}. 16 numbers, not all zero. e.g.:
1,1,1,1,0,0,0,1, 13,1,4,1,5,9,2,6,5,3,5,8,9,7,9, 3].
0,0,1,1,0,0,0, Data stored in 64 qubits:

1,0,0,0,0,0, 1, a list of 2°4 numbers, not all zero.
.0,0,1,0,0,0,1,

1001000 Data stored in 1000 qubits: a list
'1,0,0,1,0,0,1). of 21990 humbers, not all zero.

antum computer

red in 3 bits:
s of {0, 1}.

bits:

ts of {0, 1}.
),0,0,1,
0,0,0,
0,0,1,
0,0,1,
0,0,0,
0,0,1).

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:
3 list of 2°* numbers. not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quan

Can simply look a
Cannot simply loo
of numbers stored

nputer State of a quantum computer Measuring a quantum comp
its: Data stored in 3 qubits: Can simply look at a bit.
a list of 8 numbers, not all zero. Cannot simply look at the |
e.g.: [3,1,4,1,5,9,2,6]. of numbers stored in n qubi

eg.: [-2,7,—1,8,1,-8,—2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
1. 16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

State of a quantum computer Measuring a quantum computer
Data stored in 3 qubits: Can simply look at a bit.

a list of 8 numbers, not all zero. Cannot simply look at the list
e.g.: [3,1,4,1,5,9,2,6]. of numbers stored in n qubits.

eg.: [-2,7,-1,8,1,—8,—2,8].

_ Measuring n qubits
e.g.: [0,0,0,0,0,1,0,0].

e produces n bits and

Data stored in 4 qubits: a list of e ‘collapses’ the state.
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.

e.g.: [3,1,4,1,5,9,2,6].
eg: [-2,7,-1,8,1, -8, —2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l] then

State of a quantum computer

Data stored in 3 qubits:
a list of 8 numbers, not all zero.
e.g.: [3,1,4,1,5,9,2,6].
eg.: [-2,7,-1,8,1,—8,-2,8].
e.g.: [0,0,0,0,0,1,0,0].

Data stored in 4 qubits: a list of
16 numbers, not all zero. e.g.:

3,1,4,1,5,9,2,6,5,3,5,8,9,7,9,3].

Data stored in 64 qubits:

264

a list of numbers, not all zero.

Data stored in 1000 qubits: a list
of 21000 numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

A quantum computer

red In 3 qubits:
8 numbers, not all zero.
1,4,1,5,9,2,6].
2,7,—1,8,1,—8,-2,8].
0,0,0,0,1,0,0].

red in 4 qubits: a list of
vers, not all zero. e.g.:

,5,9,2,6,5,3,5,8,9,7,9,3].

red In 64 qubits:

004 numbers, not all zero.

red In 1000 qubits: a list
numbers, not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.. Sa
[1,1,1,1

N _computer

ubits:
s, not all zero.
), 2, 6.
'1,-8,-2,8].
,0,0].

ubits: a list of
Il zero. e.g.:

53,5,8,9,7,9,3].

qubits:
ers, not all zero.

)0 qubits: a list
not all zero.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

lag, a1, ..
measurement produces g

with probability |ag|?/ Y, |ar|?.

Y azn_l] then

“Collapse”: New state is all zeros

except 1 at position q.

e.g.: Say 3 qubits
[1,1,1,1,1,1,1, 1]

’E€ro.

st of

| zero.

a list
ro.

Measuring a quantum computer

9,7,9,3].

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

e produces n bits and

e ‘col

If n qu

lag, a1, . .

apses the state.

bits have state
Y azn_l] then

measurement produces g
with probability |ag|?/ Y, |ar|?.

“Collapse”:

except

1 at position q.

New state i1s all zeros

e.g.: Say 3 qubits have stat:
1,1,1,1,1,1,1,1].

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
ol

ol

ol

ol

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
orobability 1/8.

Measuring a quantum computer

Can simply look at a bit.
Cannot simply look at the list
of numbers stored in n qubits.

Measuring n qubits
e produces n bits and

e ‘collapses” the state.

If n qubits have state

[ag, a1, ..., apn_1] then
measurement produces g

with probability |ag|?/ Y, |ar|?.

“Collapse”: New state is all zeros
except 1 at position q.

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
ol

ol

ol

ol

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

“Quantum RNG.”

Measuring a quantum computer e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Can simply look at a bit.
Cannot simply look at the list Measurement produces

of numbers stored in n qubits. 000 = 0 with probability 1/8;
001 = 1 with probability 1/8;
010 = 2 with probability 1/8;
011 = 3 with probability 1/8;
100 = 4 with probability 1/8;

Measuring n qubits

e produces n bits and

e ‘collapses” the state.

It n qubits have state 101 = 5 with probability 1/8;
|30, a1, ..., agn_1] then 110 = 6 with probability 1/8;
measurement produces q 111 = 7 with probability 1/8.

with probability |aq\2/zr \ar\Q- “Quantum RNG.”

“Collapse”: New state is all zeros |
Warning: Quantum RNGs sold

except 1 at position q. |
today are measurably biased.

N1g a quantum computer

ply look at a bit.
simply look at the list
ers stored in n qubits.

iNng n qubits
“es n bits and
)yses' the state.

ts have state
e azn_l] then
ment produces g

bability |aq|?/S_, |ar|?.

e : New state is all zeros
at position g.

e.g.. Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

vlased.

e.g.. Sa
13,1,4,1

(um_computer

t a bit.
k at the list
in n qubits.

ts
and
state.

ate
then
luces g

al?/ X rlarl?.

state 1s all zeros
n q.

e.g.: Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

e.g.. Say 3 qubits
3,1,4,1,5,9, 2, 6]

uter

St
[S.

ZEroS

e.g.: Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

vlased.

e.g.: Say 3 qubits have stat:
13,1,4,1,5,9,2,6].

e.g.: Say 3 qubits have state

1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with probabi
001 = 1 with probabi

010 = 2 with probabi

011 = 3 with probabi
100 = 4 with probabi

101 = 5 with probabi

110 = 6 with probabi

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

111 = 7 with probability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably

hlased.

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

10

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

orobability 1/8;
orobability 1/8;

orobability 1/8;

orobability 1/8;

n probability 1/8;

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 wit

101 = 5 with
110 = 6 with
111 = 7 with

orobability 1/8;

orobability 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

orobability 9/173;
orobability 1/173;

orobability 1/173;

probability 25/173;
orobability 81/173;

orobability 4/173;

orobability 16/173;

orobability 36/173.

10

e.g.: Say 3 qubits have state
[1,1,1,1,1,1,1,1].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
ol

ol

ol

ol

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

“Quantum RNG.”

Warning: Quantum RNGs sold
today are measurably

hlased.

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

DIro
DIro

DIro

Oro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

ol
D1
ol
ol

ol

ol

ol

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

v 3 qubits have state
,1,1,1,1].

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;
ility 1/8;

orobability 1/8.

im RNG.”

- Quantum RNGs sold
e measurably

vlased.

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

olge
olge

olge

Dro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

e.g.. Sa
0,0,0,(

have state

luces

ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8;
ability 1/8.

m RNGs sold
bly biased.

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

Do
DIro

DIro

Oro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
ol

ol

ol

ol

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
lity 4/173;
orobability 36/173.

5 1s most likely outcome.

10

e.g.. Say 3 qubits
0,0,0,0,0,1,0,0]

D

W GN WGWVV WGV WV VW W WV

old

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with
001 = 1 with
010 = 2 with
011 = 3 with
100 = 4 with
101 = 5 with
110 = 6 with
111 = 7 with

olge
olge

olge

Dro
pro
Oro
Oro

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;
orobability 36/173.

5 1s most likely outcome.

10

e.g.: Say 3 qubits have stat:
0,0,0,0,0,1,0,0].

e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6].

Measurement produces

000 = 0 with pro
001 = 1 with pro
010 = 2 with pro
011 = 3 with pro
100 = 4 with pro
101 = 5 with pro
110 = 6 with pro
111 = 7 with

orobability 36/173.

Dd
Dd
Dd
Dd
Dd

Dd

Dd

D1
D1
ol
ol

ol

ol

ol

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;

5 1s most likely outcome.

10

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

11

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6]. 0,0,0,0,0,1,0,0].
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability O;
111 = 7 with probability 36/173. 111 = 7 with probability 0.
5 1s most likely outcome.

e.g.. Say 3 qubits have state : e.g.: Say 3 qubits have state
13,1,4,1,5,9,2,6]. 0,0,0,0,0,1,0,0].
Measurement produces Measurement produces
000 = 0 with probability 9/173; 000 = O with probability O;
001 = 1 with probability 1/173; 001 = 1 with probability 0;
010 = 2 with probability 16/173; 010 = 2 with probability 0;
011 = 3 with probability 1/173; 011 = 3 with probability 0;
100 = 4 with probability 25/173; 100 = 4 with probability O
101 = 5 with probability 81/173; 101 = 5 with probability 1;
110 = 6 with probability 4/173; 110 = 6 with probability 0;
111 = 7 with probability 36/173. 111 = 7 with probability O.
5 is most likely outcome. b Is guaranteed outcome.

v 3 qubits have state
,5,9,2,6].

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

DI
DI
DI
DI

DI

DI

DI

ility 9/173;
lity 1/173;
ility 16/173;
lity 1/173;
ility 25/173;
lity 81/173;
ility 4/173;
orobability 36/173.

t likely outcome.

10

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with
001 = 1 with

orobability 0;
orobability 0;

010 = 2 with probability O;
011 = 3 with probability O;
100 = 4 with probability O;
101 = 5 with probability 1;
110 = 6 with probability O;
111 = 7 with probability O.

b Is guaranteed outcome.

11

NOT ga

NOTp g
3,1,4,]1
1,3,1,4

have state

luces
ability 9/173;
ability 1/173;

ability 1/173;

ability 4/173;

ability 36/173.

tcome.

ability 16/173;

ability 25/173;
ability 81/173;

10

11
e.g.: Say 3 qubits have state

0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

NOT gates

NOTp gate on 3 ¢
3,1,4,1,5,9,2,6
1,3,1,4,9,5,6,2

D

73;
73;

/173;

|7 3:

/173;
/173;

[73;

/173.

10

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

b Is guaranteed outcome.

11

NOT gates

NOTp gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

ubits:

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

ubits:

12

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
3,1,4,1,5,9,2,6] —
1,3,1,4,9,5,6,2].

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3

1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

12

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
3,1,4,1,5,9,2,6] —
1,3,1,4,9,5,6,2].

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3

NOT; gate on 3 qubits:
3,1,4,1,5,9,2,6] —
4,1,3,1,2,6,5,9].

1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

12

e.g.: Say 3 qubits have state
0,0,0,0,0,1,0,0].

Measurement produces
000 = 0 with probability O;
001 = 1 with probability O;

010 = 2 with probability O;

011 = 3 with probability O;
100 = 4 with probability O;

101 = 5 with probability 1;

110 = 6 with probability O;
111 = 7 with probability 0.

5 Is guaranteed outcome.

11

NOT gates

NOTy gate on 3 qubits:
3,1,4,1,5,9,2,6] —
1,3,1,4,9,5,6,2].

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3

NOT; gate on 3 qubits:
3,1,4,1,5,9,2,6] —
4,1,3,1,2,6,5,9].

NOT, gate on 3 qubits:
3,1,4,1,5,9,2,6] —
509,2,6,3,1,4,1].

1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

12

v 3 qubits have state

,0,1,0,0].

ment produces

wit
wit
wit
wit
wit
wit

wit

N

N

N

N

olge
olge

olge

Do

N pro

N

N

with

olgo
olge

Dd
Dd
Dd
Dd
Dd

Dd

Dd

o]
o]
o]
o]

o]

o]

o]

ity O;
ity O;
ity O;
ity O;
ity O;
ity 1;
ity O;

orobability O.

-anteed outcome.

11

NOT gates

NOTq gate on 3 ¢
3,1,4,1,5,9,2,6

NOT; gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

NOT»> gate on 3 ¢
3,1,4,1,5,9,2,6

4,1,3,1,2,6,5,9].

5,9,2,6,3,1,4,1].

ubits:
—

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3
1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

ubits:
—

ubits:
—

12

1,0,0,
0,1,0,
0,0, 1,
0,0, 0,
0,0, 0,
0,0,0,
0,0, 0,
0,0, 0,

Operatic
NOTy, s
Operatic

flipping
Flip: ou

have state

luces

ability O;
ability O;
ability O;
ability O;
ability O;

ability 1;

ability O;
ability O.

tcome.

11

NOT gates

NOTy gate on 3 ¢
3,1,4,1,5,9,2,6

NOT; gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

NOT»> gate on 3 ¢
3,1,4,1,5,9,2,6

4,1,3,1,2,6,5,9].

5,9,2,6,3,1,4,1].

ubits:
—

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3
1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

ubits:
—

ubits:
—

12

state
1,0,0,0,0,0,0,C
0,1,0,0,0,0,0,C
0,0,1,0,0,0,0,C
0,0,0,1,0,0,0,C
0,0,0,0,1,0,0,C
0,0,0,0,0,1,0,C
0,0,0,0,0,0,1,C
0,0,0,0,0,0,0,1

Operation on quat
NOTg, swapping |
Operation after m

flipping bit 0 of re
Flip: output Is no

D

12

NOT gates state Mmeasure
NOT, gate on 3 qubits: 1,0,0,0,0,0,0,0] 000
3,1,4,1,5,9,2,6] — 0,1,0,0,0,0,0,0] 001
1,3,1,4,9,5,6,2]. 0,0,1,0,0,0,0,0] 010
NOTy gate on 4 qubits: ;O’ 0,0,1,0,0.,0, O; 011
3,1,4,1,5,9.2,6,5.3,5,8,9,7,9,3] > 0.0,0,0,1,0,0,0] 100
1.3.1.4.956.2.3.5857.93.9] 0,0,0,0,0,1,0,0) 101
' ' 0,0,0,0,0,0,1,0] 110
NOT; gate on 3 qubits: 00000001 111

3,1,4,1,5,9,2,6] —

4.1,3,1,2,6,5,9] Operation on quantum state

NOTp, swapping pairs.

NOT> gate on 3 qubits: Operation after measuremer
3,1,4,1,592,6]/— flipping bit O of result.
5,9,2,6,3,1,4,1]. Flip: output Is not input.

NOT gates

NOTy gate on 3 ¢
3,1,4,1,5,9,2,6

NOT; gate on 3 ¢
3,1,4,1,5,9,2,6

1,3,1,4,9,5,6,2].

NOT, gate on 3 ¢
3,1,4,1,5,9,2,6

4,1,3,1,2,6,5,9].

5,9,2,6,3,1,4,1].

ubits:
—

NOTy gate on 4 qubits:
3,1,4,1,5,9,2,6,53,5,8,9,7,9,3
1,3,1,4,9,5,6,2,3,5,8,5,7,9,3,9].

ubits:
—

ubits:
—

12

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTp, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

tes

ate on 3 ¢
,5,9,2,6

,9,5,6,2].

ubits:
—

ate on 4 qubits:

5,9,2,6,5,3,5,8,9,7,9,3
0,5,6,2,3,5,8,5,7,9,3,9].

ate on 3 ¢
,5,9,2,6

,2,6,5,9].

ate on 3 ¢
,5,9,2,6

,3,1,4,1].

ubits:
—

ubits:
—

12

OO O O O O O O —

o O O O O = O O

0,0,0,0,0
0,0,0,0,0
0,0,0,0,0
1,0,0,0,0
0,1,0,0,0
0,0,1,0,0
10,0,0,1,0
10,0,0,0,1

state

measurement

Operation on quantum state:

NOTg, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

13

Controll

e.g. C1N
3,1,4,]1
3,1,1,4

ubits:
>

.
jubits:
,5,8,9,7,9,3

,8,5,7,9,3,9].

ubits:

12

state measurement
1,0,0,0,0,0,0,
0,1,0,0,0,0,0,
0,0,1,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,1,0,0,
0,0,0,0,0,1,0,
0,0,0,0,0,0,1,
0,0,0,0,0,0,0,

O
p—
(-

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (

€.g. ClNOToi
3,1,4,1,5,9,2,6
3,1,1,4,5,9,6,2

12

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gz

€.g. ClNOT():
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

14

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,

14

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
(92, 91, q0) — (92, 91, 0 ® q1).
€.g. CQNOTo:
3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

state measurement
1,0,0,0,0,0,0,0] 000
0,1,0,0,0,0,0,0] 001 =
0,0,1,0,0,0,0,0] 010
00010000 011~
0,0,0,0,1,0,0,0] 100
00000100 101
0,0,0,0,0,0,1,0] 110
0,0,0,0,0,0,0,1] 111 =

Operation on quantum state:
NOTg, swapping pairs.
Operation after measurement:

flipping bit 0 of result.
Flip: output is not input.

13

14

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:
flipping bit 0 /f bit 1 is set; i.e.,
€.g. CQNOTo:

3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2]

€.g. CQNOT2:
3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

state measurement

0,0,0,0,0 000 >

0,0,0,0,0] 001

0,0,0,0,0] 010 —

1,0,0,0,0] 011

0,1,0,0,0 100 >

0,0,1,0,0] 101

0,0,0,1,0] 110 —

0,0,0,0,1] 111

)n on quantum state:
wapping pairs.

n after measurement:
bit 0 of result.

tput Is not Iinput.

13

Controlled-NOT (CNQOT) gates

€.g. ClNOT():
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:

(92,91, 90) — (g2,91. 90 D q1).

€.g. CQNOT():
3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. C()NOTQZ
3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

flipping bit 0 /f bit 1 is set; i.e.,

14

Toffoli g

Also knc
controlle

e.g. Cr(C
3,1,4,:
3,1,4,:

measurement

1tum state:
alrs.
easurement:
sult.

. Input.

13

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. CQNOT2:
3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

14

Toffoli gates

Also known as CC
controlled-controll

e.g. CHoC{NOTy:
3.1,4,1,5.9,2,6
3,1,4,1,5,9,6,2

ERVAVARVARVE

1t

13

Controlled-NOT (CNOQOT) gates

€.g. Cl NOT():

O
fli

3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

heration after measurement:

oping bit 0 /f bit 1 is set; i.e.,

(92,91, 90) — (g2,91. 90 D q1).
€.g. CQNOT():

3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. C()NOTQZ

3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

14

Toffoli gates

Also known as CCNOT gate
controlled-controlled-NOT g

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi
3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

Operation after measurement:

flipping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).

€.g. CQNOTo:
3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. CQNOT2:
3,1,4,1,5,9,2,6] —
3,9,4,6,5,1,2,1].

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

15

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi

O
fli

3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

heration after measurement:

oping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).
€.g. CQNOTo:

3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. CQNOT2:

3,1,4,1,5,9,2, 6] —
3,9,4,6,5,1,2,1].

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:
(92,91, 90) — (g2, 91, 90 @ q192).

Controlled-NOT (CNOQOT) gates

€.g. ClNOToi

O
fli

3,1,4,1,5,9,2,6] —
3,1,1,4,5,9,6,2].

heration after measurement:

oping bit 0 /f bit 1 is set; i.e.,

(g2, 91.90) — (92,91, 90 D q1).
€.g. CQNOTo:

3,1,4,1,5,9,2,6] —
3,1,4,1,9,5,6,2].

€.g. CQNOT2:

3,1,4,1,5,9,2, 6] —
3,9,4,6,5,1,2,1].

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:
(92,91, 90) — (g2, 91, 90 @ q192).

€.g. COC1NOT2:
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1].

ed-NOT (CNOT) gates

IO Ty:
,5,9,2,6] —
1, 5,9,6,2].

n after measurement:

bit O /f bit 1 is set: i.e.,

70) — (g2, 91,90 @ q1)-

IO Tp:
,5,9,2,6] —
,9,5,6,2].

IOT»:
,5,9,2,6] —
,5,1,2,1].

14

15
Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

e.g. COC1NOT2:
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1].

More sh

Combine
to build

CNOT) gates

>
.

easurement:

t 1 1s set; I.e..

g1, 90 D q1)-

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

€.g. COC1NOT2:
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1].

15

More shuffling

Combine NOT, CI
to build other pert

1tes

1t:

1.e.,

71).

14

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:

(92,91, 90) — (92,91, 90 ® q192).

e.g. COC1NOT2:
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2, 1]

15

More shuftfling

Combine NOT, CNOT, Toff
to build other permutations.

Toffoli gates

Also known as CCNOT gates:
controlled-controlled-NOT gates.

e.g. CHoC{NOTy:
3,1,4,1,5,9,2,6] —
3,1,4,1,5,9,6,2].

Operation after measurement:
(92, 91, 90) — (92, 91, 90 @ q192).

€.g. COC1NOT2:
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1].

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

16

15 16

Toffoli gates More shuffling
Also known as CCNOT gates: Combine NOT, CNOT, Toffol
controlled-controlled-NOT gates. to build other permutations.
e.g. CHC{NOTyp: e.g. series of gates to
3,1,4,1,5,9,2,6] — rotate 8 positions by distance 1:
3,1,4,1,5,9,6,2]. 31415926
Operation after measurement: CoC1NOT>
(92, g1, q0) — (g2, q1, G0 © G192). 314065921

CoNOTy >< ><
€.g. COC1NOT2: 36415120
3,1,4,1,5,9,2,6] —
3,1,4,6,5,9,2,1 NOTo >< >< >< ><
T e . 6 3141592

ates

wn as CCNOT gates:
d-controlled-NOT gates.

1NOTy:
,5,9,2,6] —
,5,9,6,2].

n after measurement:
70) — (g2, 91, 90 D g192).

1NOT»>:
,5,9,2,6] —
,5,9,2,1].

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCiNOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadama

Hadama

la, b] —

3 1
X |
4 2

NOT gates:
ed-NOT gates.

>

.

easurement:
.41, G0 D q192).

>

15

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

la,b] — [a+ b, a-

3 1 4 1
XX
4 2 5 3

ates.

1t
71G2)-

15

More shuftfling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

convot, X X

36415129

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a— b].

3 1 4 1
XX
4 2 5 3

ﬂ

5 0
X

14 —4 ¢

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

conoT, X X

364151209

NO Ty >< >< >< ><

6 3141592

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1
XX
4 2 5 3

2

X TX

14 —4 8

6

—4

17

More shuffling

Combine NOT, CNOT, Toffoli
to build other permutations.

e.g. series of gates to
rotate 8 positions by distance 1:

314159 26

CoCi{NOT>
31465921

X X

364151209

X XX X

6 3141592

CoNOT

NOT,

16

17
Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
a,b,c, dl—

a+c,b+d,a—c, b—d

R

1

KK

—10l

uffling

> NOT, CNOT, Toffol
other permutations.

s of gates to
positions by distance 1:

314159 26

P

R

6 3141592

1

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a— b].

31 4 1 5 90 2 6
X IXT X IX
4 2 5 3 14 —4 8 -4
Hadamards:
a,b,c, dl—

a+c,b+da—c b—d
RSK T RK

2 —1 15 3

17

Some us

Hadama

3 1
N

X

4
\

>

2
7

NOT, Toffoli
mutations.

1O
by distance 1:

16

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2 6

XL IXE X IX

4 2 5 3 14 —4 8 —4
Hadamards:

a,b,c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2 6‘3

17

Some uses of Had

Hadamardg, NOT,

4 N
2><4 3><5 -
o XL

| mc CN WS | Y
(O
> S <t <t B
3T > X o<
(0 o W — | —
<z
(O _I o\
9 i w—F
5 S <X <X X
O = >
8 =
oV
- - — — <~ —
£ T > <
e 5 N NN,
N
i
4 —
N —— 00 . o\ o
<
< LO
@) | | =) —
—_ a
Q VA]
| o—3X g O —I~
|
3
O o) —— 3 —_— 0O
5 > SR N .
of - T o -
wm wm Q] ,:D
c £ I « E v e
Sl - X X T L +
c °] N —— < < T o N — I~
T T S T © °
e
O — 9VA2
oV oV oV o))
. —
0O V 9<9 — BTe)

18

Some uses of Hadamard gates
Hadamardg, NOTg, Hadamardp:

XX

5
\

X

—2 10 —18 4 —12

17

Hadamard gates
Hadamardp:

la, b] — [a+ b,a — b].

Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2
X IXE X IX
4 2 5 3 14 —4 8
Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2

6
\

—4

|
3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 T

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“Multiplied each amplitude by 2."
This i1s not physically observable.

18

Hadamard gates

Hadamardp:

la, b] — [a+ b,a — b].

3 1 4 1 5 9 2 6
XL IXE X TX
4 2 5 3 14 —4 8 —4

Hadamards:

a, b, c, dl—

a+c, b+d,a—c, b—d]

3 1 4 T T 9 2 6‘3

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T—414—4T

XXX

—2 10 —18 4 —12

X1 1X]

>
>

>
>

2 4
| X |
6 -2

“Multiplied each amplitude by 2."
This i1s not physically observable.

“Negated amplitude if gg is set.”
No effect on measuring now.

18

rd gates
rdo:

[a+ b,a— b].

4 1 5 9 2 06
X IXT X
5 3 14 —4 8 —4
rdy:
1] —

»+—d,a——c,b——cﬂ.

K1 K]

17

Some uses of Hadamard gates

Hadamardg, NOTg, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4
X X X X
2 4 3 5 —4 14 —4
X | \X\ | X| \X\
6 -2 8 —2 10 —18 4 —12

“"Multiplied each amplitude by 2."
This i1s not physically observable.

"Negated amplitude if qg is set.”
No effect on measuring now.

Fancier
"Negate
Assumes

CoC1N(

Hadam:

NOT

Hadam:

CoCq N

Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 ,
X IXE IXTIX
4 2 5 3 —4 8 —4

14>< ><

T 4 14 —4 T

XXX

—2 10 —18 4 —12

Xl 1]

>
>

>
>

2 4
X |
6 —2

"Multiplied each amplitude by 2."
This i1s not physically observable.

“Negated amplitude if gg is set.”
No effect on measuring now.

18

Fancier example:
“"Negate amplitud
Assumes g» = O:

31
CoCiNOT>

Hadamard»

LW—Ww

NG\ U (N

NOT»,

Hadamard»

S ——W

CoCi{NOT>

(@)
N

N

LW ———O

17

18
Some uses of Hadamard gates

Hadamardg, NOTgy, Hadamardp:

3 1 4 1 5 9 2 6
X IXT X IX
4 2 5 3 14 —4 8 —4

X X X X

> 4 3 5 —4 14 —4 8

XL IXT X IX

6 —2 8 -2 10 —18 4 —-12
“Multiplied each amplitude by 2."

This I1s not physically observable.

"Negated amplitude if qg is set.”
No effect on measuring now.

Fancier example:

“Negate amplitude if gggy I

Assumes g» = O:

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

3141

|
3

3 14—

1

4

“ancilla” ¢

0
N
00

1 4713

3

 PREE

62380

6 2 3—-2

0
\
//
0

18
Some uses of Hadamard gates Fancier example:

Hadamardg, NOTg, Hadamardy: Negate amplitude if ggqy Is set.

Assumes go» = 0: “ancilla” qubit.

3 1 4 1 5 9 2 6

X IXT X IX 31410000
4 2 5 3 14 -4 8 —4 CoCiNOT> ><
>< >< >< >< 31400001
2 4 3 5 —4 14 —4 8 Hadamard» ‘ ‘
X IXT X IX 3L8LS L4
6 —2 8 -2 10 —18 4 —-12 NOT>5

3°1°4=—13 1 41

“Multiplied each amplitude by 2." Hodarmard ‘ ‘
This I1s not physically observable. ° ; 6280000 -2
“Negated amplitude if qg Is set.” CoCiNOT>

No effect on measuring now. 6 28-20000

es of Hadamard gates

rdo, NOTo, HadamardO:

4 1 5 9 2 6
X IXT X
5 3 14 —4 8§ —4

X X X

3 5 —4 14 —4 8

XL IXT X

8 —2 10 —18 4 —12
led each amplitude by 2."

ot physically observable.

d amplitude if gg is set.”
t on measuring now.

18

Fancier example:
"Negate amplitude if ggqg; Is set.”
Assumes g» = O:

“ancilla” qubit.

31410000

CoCi{NOT>

31400001

Hadamard> ‘

31413 1 4-1

NOT»,

3 14—

Hadamard> ‘

623000 0-2

CoCi{NOT>

31 4°1

6 2 3-20000

19

Affects |
amplituc
13,1,4,]

18 19

amard gates Fancier example: Affects measurems
" Hadamardy: Negate amplitude if q-0q1 IS se.t. amplitude around
Assumes g» = 0: “ancilla” qubit. 3,1,4,1] — [1.5,.

2

5 9 6
X | X 31410000

14 -4 8 —4 CoCiNOT>

X X 31400>0<01

-4 14 —4 8 Hadamard» ‘W‘

X X 371741773104 —1

10 —-18 4 —12 NOT,
31 4-1314'1
litude by 2."
MpHTUae by Hadamard» ‘ ‘
lly observable. 627807000 —2
de if gg Is set.” CoCi{NOT>

uring now. 6 2 8—-20 0 00

able.

set.”

18

Fancier example:

"Negate amplitude if ggqg; Is set.”

Assumes go» = 0: “ancilla” qubit.

CoCi{NOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

3141 31 4-1
T14—314T

623000 0-2

6 2 3-20000

19

Affects measurements: “Nej

amplitude around its averag
13,1,4,1] — [1.5,3.5,0.5, 3.

Fancier example:

"Negate amplitude if ggqgy is set.”

Assumes go» = 0: “ancilla” qubit.

CoCiNOT>

Hadamard»

NOT»,

Hadamard»

CoCi{NOT>

31410000

31400001

PR

314131 4-1
T14—314T

623000 0-2

6 2 320000

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

20

Fancier example:
"Negate amplitude if ggqgy is set.”
Assumes go» = 0: “ancilla” qubit.

31410000

CoCiNOT>
31400001

Hadamard» ‘ ‘
3’14713 14-1

NOT»,
371 4—-13 141

Hadamard» ‘ ‘
628000 0-2

CoCi{NOT>
6 2 3—20 0 0 0

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 0 O
W X I IX) X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
—4-14-2 0 0 0 0 O
W KK RK
—-6—-14-2-140 0 0 O

20

example:
amplitude if ggqgy is set.”

> go = 0: “ancilla” qubit.

31410000

)TH
31400001

. R
3’14131 4-1

31 4-13 141

| BRERED
6280 000-2

)TH
6 23—-20000

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5,3.5].

31 4 1 0 0 O

W X IX) X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

-9 5 —-1-10 0 O

W XL IXT X IX
14—-2 0 0 0 O

W KK RK
6-14-2-140 0 O

20

Simon's

Assumpt

e Given
can ef

e Nonze

o f(u) =
e f has

Goal: Fi

2 if gogy Is set.”
“ancilla” qubit.

4 1 0000

4 00 001

B

413 1 4-1
4—-13 1 41

8000 0-2

8—-20 000

19

Affects measurements: “Negate
amplitude around its average.”

3,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O
W X IXI X [X
4 2 5 3 0 0 O
W DRKT RK
RENRER
.—95—1—10 0 O
W X IXT X [X
—4-14-2 0 0 0 O
W ORK | RK
—6—-14-2—-14 0 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:

e Given any u € {
can efficiently cc

e Nonzero s € {0,

o f(u)="f(uds)

e f has no other ¢

Goal: Figure out ¢

19

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5,3.5].

31 4 1 0 0 O

W X IX] X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

-9 5 —-1-10 0 O

W XL IXT X IX
14—-2 0 0 0 O

W KK RK
6-14-2-140 0 O

20

Simon’s algorithm

Assumptions:

e Given any u € {0,1}",
can efficiently compute f(

e Nonzero s € {0,1}".

o f(u)="f(uds) for all u.

e f has no other collisions.

Goal: Figure out s.

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O

W X IX1 X [X
4 2 5 3 0 0 O

W DRKT RK
RENRER

.—95—1—10 0 O
W XL IXT X IX
14-2 0 0 0 O

W ORK | RK
6-14-2-140 0 O

O——mO ——O —O —O —0O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",

can efficiently compute f(u).

e Nonzero s € {0,1}".
e f(u)=Ff(ues) for all u.
e has no other collisions.

Goal: Figure out s.

21

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 O

W X IX1 X [X
4 2 5 3 0 0 O

W DRK T TRK
RENRER

-9 5 —-1-10 0 O

W XL IX]IX) X
(‘)OO

il ‘>K>K‘

6-14-2-14 0 0 O

O——mO ——O —O —O —0O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Affects measurements: “Negate

amplitude around its average.”
13,1,4,1] — [1.5,3.5,0.5, 3.5].

31 4 1 0 0 0 O
W X I X)X
4 2 5 3 0 0 0 O
W KK RK
RENREES
-9 5 -1 -10 0 0 O
W X IXT X)X
4—-14-2 0 (‘) 0 O(‘)

il ‘>K>K‘

6-14-2-140 0 0 O

20

21
Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

neasurements: “Negate
le around Its average.”
| —]1.5,3.5,0.5,3.5].

1 4 1 0 0 0 O
<X IXT IX
KK T KK

[T

5 —‘1 —‘1 0 0 0 O
<X IXT IX
—14 -2 0 (‘) 0 O (‘)

KK

—14-2-140 0 0 O

20

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)y="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example

Step 1.
0,

O O 0O O O O o W
e e
I

This exa
with 3-b

20 21

ants: “Negate Simon'’s algorithm Example of Simon
;tSB a(;/e5ra3g:. Assumptions: Step 1. Set up pu
5,0.5,3.5] e Given any u € {0,1}", 1, 0, 0,0, 0, 0, (

can efficiently compute f(u). 0,0 0 000, (
L0000 g Nonzero s € {0, 1}, 0, 0,0, 0, 0, 0, (
‘ ‘><‘ ‘><‘ o f(u)=Ff(uds) for all u. 0,0,0 00,0, (
3 0 0 00 e f has no other collisions. 0,0, 0,0 0,0, (
‘ ‘ >’<>’< ‘ Goal: Figure out s 0,0..0,0,°6,0,
10000 | | 0, 0, 0, 0, 0, 0, ¢
‘ ‘ ‘ ‘ ‘ Non-quantum algorithm to find s: 0.0 0 0 0 O, (
-1 0 0 0 O compute f for many inputs, | |

. . This example is fo

‘ hope to find collision. | o
0 0 0 0 0 with 3-bit input at
‘ ‘ >K>4< ‘ Simon's algorithm finds s with
14070750 0 ~n quantum evaluations of f.

20 21

compute f for many inputs,

. . This example is for a functic
hope to find collision. | o |
with 3-bit input and 3-bit ol
Simon’s algorithm finds s with

~n quantum evaluations of f.

rate Simon'’s algorithm Example of Simon's algorith
: Assumptions: Step 1. Set up pure zero st:
| e Given any u € {0, 1}", 1, 0, 0,0, 0,0, 0, 0,
can efficiently compute f(u). 0,0000,0,0,HQ0,
0 e Nonzero s € {0, 1}". 0, 0, 0, 0, 0, 0, 0, 0,
‘>< o f(u)="f(uds) forall u. 0,0,0,0,0,0, 0, 0,
;>T< e f has no other collisions. 0, 0,0,0,0,0, 0,0,
0 Goal: Figure out s. U 0,0,0,0,0,0,°0,
0,0,0,0,0,0,0, 0,
‘ Non-quantum algorithm to find s: 0.0 0 0 0 0 0 O.
0
X
0

O——OO —O — O — O —0O

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 1. Set up pure zero state:
0, 0, O, 0,

I e

e e
I
I e

O O 0O O o0 o o
O OO O O O O
e e e
e

0,

This example is for a function f
with 3-bit input and 3-bit output.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 2.0. Hadamardp:

1,1, 0,0, 0,0, 0, O,
0, 0,0, 0,0,0,0, 0O,
0, 0,0,0,0,0, 0, O,
0, 0,0,0,0,0, 0, O,
0, 0,0, 0,0,0, 0, O,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
0, 0,0, 0,0,0,0, 0.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 2.1. Hadamardj:

1,11, 1,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0O,
0, 0,0,0,0,0, 0, O,
0, 0,0,0,0,0, 0, O,
0, 0,0, 0,0,0, 0, O,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
0, 0,0, 0,0,0,0, 0.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 2.2. Hadamards:

O OO O OO O -
O O OO OO O
O O OO O O O
e e
e
O O OO0 OO O
O O OO O O O
O OO O OO O+

Each column is a parallel universe.
Step 3 will apply the function f (a
specific function in this example),
computing f(u) in universe u.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 3a. CogNOTj3:

O OO OO O O
O OO OO O Rr O
O OO O O O O
I e
O OO OO O O
O OO OO O Rr O
O OO O O O O
O OO OO O Rr o

Each column is a parallel universe
performing its own computations.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3b. More entry shuffling:

O O OO0 O o O K
O OO OO O Rr O

O O OO0 O o o K
O O OO0 O o +rH O

O OO+ OO O O
O O H OO O O O
O OO H O O O O
O O H OO O O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3c. More entry shuffling:

O O OO0 O r OO
O O OO r O O O

O OO R OO O O
O O OO O O O
O H OO OO O O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3d. More entry shuffling:

O O OO0 O r OO
O OO OO O Rr O

O OO R OO O O
H O O O O O O O
O H OO OO O O
O O OO O O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3e. More entry shuffling:

O O OO0 O r OO
O OO OO O Rr O

O OO R OO O O
O R OO OO O O
O H OO O O O O
O OO+ OO O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3f. More entry shuffling:
0,0 000, 1,D0, 0,

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3g. More entry shuffling:

O O OO0 O o +rH O
O OO OO+ O O

H O O O O o o o
O O H OO O O O
O O OO O o O
H O O O O O O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3h. More entry shuffling:

O O OO O O O
O RO OO O O O

O O 0O O Kr O oo
O O OO O O+ O
O O OO0 O o+ O
O OO O O O O

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3i. More entry shuffling:
0,00 0,00, 1,0,

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3j. Final entry shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.

22

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

Example of Simon’s algorithm

Step 3j. Final entry shuffling:
0,00, 00,0, 0,0,

Each column is a parallel universe
performing its own computations.
Surprise: u and u @ 101 match.

22

21

Simon'’s algorithm Example of Simon’s algorithm
Assumptions: Step 4.0. Hadamardp:
e Given any u € {0,1}", 0,0,0,0,0, 0,0, 0,
can efficiently compute f(u). 0,0 1,1, 0,0, 1, 1,
e Nonzero s € {0,1}". 0,0 000,00, 0,
o f(u)="Ff(uds) for all u. 0,0, 1,10 0 1, 1,
e f has no other collisions. 1.1.0,0 1 1, 0 0
Goal: Figure out s. U, 0,0,0,0,0,0, 0,
0,0, 0,0,0,0,0, 0,
Non-quantum algorithm to find s: 1.1.0 0 1.1 0 0.

compute f for many inputs,

. . Notation: 1 means —1.
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 4.1. Hadamardj:

= O | O
I—‘Ip_l—‘p

_ O O R KB O R O
HFo o, RO RO
OO R RO RO
RO O = =k O O

—_— O O == O = O
_prl—t_l—\lo_l—\lp

= O O Y
_l—\ppl—\l

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0, 0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2, 0, 2.

Simon’s algorithm

Assumptions:
e Given any u € {0,1}",
can efficiently compute f(u).
e Nonzero s € {0,1}".
e f(u)="Ff(uds) for all u.
e f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find collision.

Simon’s algorithm finds s with
~n quantum evaluations of f.

21

22
Example of Simon’s algorithm

Step 4.2. Hadamards:

N O O NN O DN O
I e
N ©O O N DN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o

N O O N
N O O N

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

algorithm

10NS:

any u € 4{0,1}",
ficiently compute f(u).
ros €{0,1}".

- f(u @ s) for all u.

no other collisions.

gure out s.

ntum algorithm to find s:
 f for many inputs,

find collision.

algorithm finds s with
1itum evaluations of f.

21

Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0, 0,0, 0,0, O,
2, 0,200 20,2
0, 0,0, 0,00, 0, O,
2, 0,20 0,2 0,2,
2, 0,2, 00,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0O,
2, 0,2,0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat |

0,1}",
mpute f(u).

1}”.
for all u.
ollisions.

;I

rithm to find s:

ny Inputs,
on.

finds s with
1ations of f.

21

22
Example of Simon’s algorithm

Step 4.2. Hadamards:
0, 0, 0, 0, 0, 0,

N O N
NO N O

e e

N O O NNONO
o o N

e e e
N O O N N O N
e
e e e

N O O N

0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

Repeat to figure o

Ind s:

th

21

22
Example of Simon’s algorithm

Step 4.2. Hadamards:
0, 0, 0, 0, 0, 0,

N O N
No N O

e e

N O O N NONO
o O N

e e
N O O NN O N
e e
R e

N O O N

0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

Repeat to figure out 101.

Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, 0O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

23

Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, 0O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

23

Example of Simon’s algorithm

Step 4.2. Hadamards:

0, 0,0,0,0,0, 0, O,
2, 0,20 0,2 0, 2
0, 0,0,0,0,0, 0, 0O,
2, 0,20 0,2 0,2,
2, 0,20 0,2 0,2,
0, 0,0, 0,0, 0,0, 0,
0, 0,0, 0,0,0,0, 0,
2, 0,2, 0,0, 2,0, 2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

oplications.

23

Example of Simon’s algorithm

Step 4.2. Hadamards:

N O O NN O N O
R e
N ©O O NN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o
o o N

N O O N

2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces @

with more general -

- operation.

Many spectacular a

e.g. Shor finds “ran

oplications.

dom’ s with

2U mod N = 2Y75 mod N.

Easy to factor N us

ing this.

23

Example of Simon’s algorithm

Step 4.2. Hadamards:

N O O NN O N O
R e
N ©O O NN O N O
O OO O O O o o
O OO OO O o o

N O N O
N O N O

O O OO0 O o o o
o o N

N O O N

2.

Step 5: Measure. Obtain some
information about the surprise: a
random vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 44159Vt mod p.

Easy to compute discrete logs.

23

' of Simon’s algorithm

. Hadamard»:
0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2,
0, 0, 2,0, 2,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 2, 0, 2.

Measure. Obtain some
ion about the surprise: a
vector orthogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general 4+ operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.

23

Grover's

Assume:
has f(s)

Goal: Fi

Non-qus
compute
hope to
Success
until #t

‘s algorithm

—
Q.
No

NIO N ON

o O N

-—r N N N N N N

N

Obtain some
the surprise: a
hogonal to 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.

23

Grover's algorithm

Assume: unique s
has f(s) = 0.

Goal: Figure out

Non-quantum algc
compute f for ma
hope to find outpl

Success probabilit
until #tries appro.

se: a
y 101.

22

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general 4+ operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y"5 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V"t mod p.
Easy to compute discrete logs.

23

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to 1
compute f for many inputs,
hope to find output 0.

Success probability is very Ic
until #tries approaches 2"

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y75 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Repeat to figure out 101.

Generalize Step 3 to any function
u— f(u) with f(u) = f(u e s).
“Usually” algorithm figures out s.

Shor’s algorithm replaces @
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with
2Y mod N = 2Y75 mod N.
Easy to factor N using this.

e.g. Shor finds “random” s, t with
4Y9Y mod p = 4Y759V*t mod p.
Easy to compute discrete logs.

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

o figure out 101.

ze Step 3 to any function
) with f(u) = f(u & s).
" algorithm figures out s.

lgorithm replaces &
re general 4+ operation.

ectacular applications.

r finds “random’” s with
N = 2Y75 mod N.
factor N using this.

r finds “random’ s, t with
d p = 4YT59V"Tt mod p.
compute discrete logs.

23 24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output 0.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

Start frc
over n-b

ut 101.

to any function
1) =f(uds).
m figures out s.

eplaces @
+ operation.

applications.

ndom” s with
mod N.
Ising this.

ndom’ s, t with
59Vt mod p.

liscrete logs.

23

Grover's algorithm

Success pro
until #tries

e.g. D04

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

instead of

vability is very low
approaches 2",

Grover's algorithm takes only on/2
quantum evaluations of f.

2128

24

Start from uniforn
over n-bit strings

1ction
) S).
out s.

on.

ns.

with

23

24
Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output 0.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2

quantum evaluations of f.
e.g. 2°% instead of 2128

Start from uniform superpos
over n-bit strings u: each g,

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2

quantum evaluations of f.
e.g. 2°% instead of 2128

24

Start from uniform superposition
over n-bit strings u: each a, = 1.

25

24 25
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

24 25
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,

hope to find output 0. Step 2: “Grover diffusion” .

el Negate a around Its average.
Success probability is very low

until #tries approaches 2" This is also fast.

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

24 25
Grover's algorithm Start from uniform superposition

Assume: unique s € {0, 1} over n-bit strings u: each a, = 1.

has f(s) = 0. Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.
Non-quantum algorithm to find s: This is fast if f is fast.

Goal: Figure out s.

compute f for many inputs,

hope to find output 0. Step 2: “Grover diffusion” .

el Negate a around Its average.
Success probability is very low

until #tries approaches 2" This is also fast.

Repeat Step 1 + Step 2

Grover's algorithm takes only on/2 05n .-
about 0.58 - 2Y°" times.

quantum evaluations of f.

e.g. 2°% instead of 2128

Grover's algorithm

Assume: unique s € {0, 1}"
has f(s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:
compute f for many inputs,
hope to find output O.

Success probability is very low
until #tries approaches 2"

Grover's algorithm takes only on/2
quantum evaluations of f.

e.g. 2°% instead of 2128

24

25
Start from uniform superposition

over n-bit strings u: each a, = 1.

Step 1: Set a < b where
by, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

“algorithm

unique s € {0, 1}"
= 0.

gure out s.

ntum algorithm to find s:
 f for many inputs,
find output O.

probability is very low
ries approaches 2".

algorithm takes only on/2

1 evaluations of f.

instead of 2128

24

Start from uniform superposition

over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.

With high probability this finds s.

25

Normali;
for an e
after O s

1.0—

—0.5+

-1.0—

24 25
|_ Start from uniform superposition Normalized graph

over n-bit strings u: each a, = 1. for an example wii
c {0,1}" & u p

Step 1: Set a < b where after O steps:

: b, = —ay if f(u) =0, 1.0,
) b, = a, otherwise. |
orithm to find s: This is fast if f is fast. 05l
Ny Inputs,

0. Step 2: “Grover diffusion” .

. Negate a around Its average. 00
/ IS very low _

ches 21 This is also fast.

Repeat Step 1 + Step 2 0.5

 takes only on/2 05n .-
about 0.58 - 2Y°" times.

)ns of f.
'2128.

Measure the n qubits. 10!
With high probability this finds s.

24 25
Start from uniform superposition Normalized graph of u+— a,

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after O steps:

b, = —ay if f(u) =0, 1Oy
b, = a, otherwise. j
ind s: This is fast if f is fast. o5l

Step 2: “Grover diffusion” .

" Negate a around Its average. 00
This is also fast. |
y 21/ Repeat Step 1 + Step 2 05"

about 0.58 - 2927 times.

Measure the n qubits. 10!
With high probability this finds s.

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after O steps:

1.0

0.5+ -

OO S E —

-0.5+ -

-1.0

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after Step 1:

1.0

0.5+ -

o0r——————————r . _

-0.5+ -

-1.0

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2:

1.0

0.5+ -

0.0 = e —

-0.5+ -

-1.0

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after Step 1 + Step 2 + Step 1:

1.0

0.5+ -

OO T —

-0.5+ -

-1.0

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 2 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO T

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 3 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO s

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 4 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO S FE

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 5 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO i

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 6 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO T FEFE

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 7 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO s

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 8 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO e

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12
after 9 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

OO — e

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 10 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 11 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 12 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 13 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 14 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 15 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 16 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 17 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 18 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 19 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 20 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. o0 '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 25 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. oo '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 30 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. oY) '

This i1s also fast.

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 35 x (Step 1 + Step 2):

1.0

0.5+ -

OO N E—————————— -

-0.5+ -

-1.0

Good moment to stop, measure.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 40 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 45 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around its average. 0.0
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 50 x (Step 1 + Step 2):

1.0

0.5+

0.0

-0.5+

-1.0

Traditional stopping point.

26

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 60 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00— |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a <— b where after 70 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 80 x (Step 1+ Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

25
Start from uniform superposition Normalized graph of u— ay

over n-bit strings u: each a, = 1. for an example with n = 12

Step 1: Set a < b where after 90 x (Step 1 + Step 2):

b, = —ay if f(u) =0, 1.0
b, = a, otherwise. j
This is fast if f is fast. 05

Step 2: “Grover diffusion” .

Negate a around Its average. 00 |
This is also fast. |

Repeat Step 1 + Step 2 05
about 0.58 - 2927 times. |

Measure the n qubits. 10!

With high probability this finds s.

Start from uniform superposition
over n-bit strings u: each a, = 1.

Step 1: Set a < b where
b, = —ay if f(u) =0,

b, = a, otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion” .
Negate a around its average.
This is also fast.

Repeat Step 1 + Step 2
about 0.58 - 2927 times.

Measure the n qubits.
With high probability this finds s.

25

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.5+

-0.5+

-1.0

10710) o

Very bad stopping point.

26

m uniform superposition
It strings u: each a, = 1.

Set a < b where
y if f(u) =0,
otherwise.

ast if f is fast.

“Grover diffusion” .
7 around Its average.
Iso fast.

>tep 1 + Step 2
58 - 2097 times.

the n qubits.
rh probability this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.5+ -

0.0 b o |

—0.5+ -

-1.0

Very bad stopping point.

u— a,
by a vec
(with fix
(1) ay f
(2) ay, f¢

1 superposition
u: each a, = 1.

) where
o (),
fast.

iffusion’ .

LS average.

Step 2
times.

Its.
lity this finds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-0.5+ -

-1.0

Very bad stopping point.

u+— a, 1s complet
by a vector of two
(with fixed multip
(1) a, for roots u;
(2) ay for non-roo

1tion

| J—

1ds s.

25

26
Normalized graph of u+— ay

for an example with n = 12
after 100 x (Step 1 + Step 2):

1.0

0.0 b o |

-1.0

Very bad stopping point.

u — a, Is completely descril
by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) ay for non-roots u.

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

27

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

26

Very bad stopping point.

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

27

Normalized graph of u+— ay
for an example with n = 12

after 100 x (Step 1 + Step 2):

1.0

0.0 b o

-0.5+

-1.0

Very bad stopping point.

26

27
u +— a, 1s completely described

by a vector of two numbers
(with fixed multiplicities):
(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°>" iterations.

zed graph of u+— ay
cample with n = 12
) X (Step 1 + Step 2):

1 stopping point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

27

Many m

2021: Y
transistc

Can thir
running

as a seq

of u+— a
h n=12
1 4 Step 2):

point.

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more quant

2021: Your CPU
transistors perforn

Can think of any :
running on that C
as a sequence of

I\J
v

26

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) ay for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map

to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

27

Many more quantum algorit

2021: Your CPU consists of
transistors performing bit of

Can think of any algorithm
running on that CPU
as a sequence of bit operatic

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

23

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,

CCNOT, and measurement
on a quantum computer.

23

u +— a, 1s completely described
by a vector of two numbers
(with fixed multiplicities):

(1) a, for roots u;

(2) a, for non-roots u.

Step 1 + Step 2
act linearly on this vector.

Easily compute eigenvalues
and powers of this linear map
to understand evolution

of state of Grover's algorithm.
= Probability i1s =1

after ~(7/4)2%°" iterations.

21

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

Is completely described
tor of two numbers

ed multiplicities):

r roots u;

DI NON-roots u.

- Step 2
rly on this vector.

ympute eigenvalues
ers of this linear map

stand evolution

of Grover's algorithm.
ability I1s =1

7 /4)29-°" iterations.

27

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

28

This suk
algorithr
compute
design n

ely described
numbers
licities):

ts u.

, vector.

renvalues

- linear map
lution

s algorithm.
-1
iterations.

21

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

This subset includ
algorithms known
computations. Le:
design non-quantu

yed

27

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

28

This subset includes the fast
algorithms known for many
computations. Learn how tc
design non-quantum algoritt

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!

29

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

29
This subset includes the fastest

algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Many more quantum algorithms

2021: Your CPU consists of
transistors performing bit ops.

Can think of any algorithm
running on that CPU
as a sequence of bit operations.

Can simulate these bit operations
and output using NOT, CNOT,
CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of
{quantum algorithms}.

23

29
This subset includes the fastest

algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

ore quantum algorithms

our CPU consists of
rs performing bit ops.

k of any algorithm
on that CPU
uence of bit operations.

ulate these bit operations
bout using NOT, CNOT,

, and measurement
Intum computer.

-quantum algorithms}
ewed as a subset of
m algorithms}.

28

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

29

2001 Sh
Shor anc
technigL
algorithr
on quan
only twc
have be¢

ym algorithms

~onsists of
1ing bit ops.

Igorithm
PU

It operations.

= bit operations
NOT, CNOT,
surement

puter.

algorithms}
) subset of
ms}.

23

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

29

2001 Shor survey

Shor and 1996 Gr
techniques for con
algorithms for clas
on quantum comp
only two significar
have been discove

)S.

ONS.

1tions
OT,

28

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

29

2001 Shor survey regarding
Shor and 1996 Grover: “Th
techniques for constructing -
algorithms for classical prob

on quantum computers are
only two significant ones wh
have been discovered so far.

29 30

This subset includes the fastest 2001 Shor survey regarding 1994
algorithms known for many Shor and 1996 Grover: “These
computations. Learn how to techniques for constructing faster
design non-quantum algorithms! algorithms for classical problems

. on quantum computers are the
Assuming quantum computers:

. only two significant ones which
Fastest known quantum-physics

. . have been discovered so far.”
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

This subset includes the fastest
algorithms known for many
computations. Learn how to
design non-quantum algorithms!

Assuming quantum computers:
Fastest known quantum-physics
simulators, fastest algorithms to
factor “hard” integers, etc. are
outside this subset. Learn how to
design quantum algorithms!

Often techniques for designing
non-quantum algorithms

are combined with techniques
specific to quantum algorithms.

29

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to
play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

set includes the fastest
ns known for many
itions. Learn how to
on-quantum algorithms!

g quantum computers:
Known quantum-physics
rs, fastest algorithms to
1ard” Integers, etc. are
this subset. Learn how to
uantum algorithms!

chniques for designing
ntum algorithms

pbined with techniques
to quantum algorithms.

29

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to
play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

30

Some cc

What if

Can try
Analysis
depend

Non-que
evaluatic
Quantur

quantun

es the fastest
for many

rn how to

'm algorithms!

n computers:
antum-physics
algorithms to
oers, etc. are

. Learn how to
gorithms!

or designing
rithms
techniques
m algorithms.

29

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to
play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

30

Some common Gr

What if f has mat

Can try same algo

Analysis and optin
depend on R = #

Non-quantum seat
evaluations of f.
Quantum search:
quantum evaluatic

est

ms!

r'S:
SICS

S to
are
oW to

29

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to
play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

30

Some common Grover varial

What if f has many roots?

Can try same algorithm.
Analysis and optimization
depend on R = #{roots of

Non-quantum search: ~27/
evaluations of f.

Quantum search: ~(2"/R)?
quantum evaluations of f.

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to

play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

30

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R
evaluations of f.

Quantum search: ~(2"/R)1/2
quantum evaluations of f.

31

2001 Shor survey regarding 1994
Shor and 1996 Grover: “These
techniques for constructing faster
algorithms for classical problems
on quantum computers are the
only two significant ones which
have been discovered so far.”

2021: Shor's algorithm and
Grover's algorithm continue to
play critical roles. There are also
several useful generalizations
and further ideas adding to the
landscape of quantum speedups.

30

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R
evaluations of f.

Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random

input set; use unique-root Grover.

31

or survey regarding 1994
1 1996 Grover: “These
es for constructing faster
ns for classical problems
tum computers are the
 significant ones which
n discovered so far.”

hor's algorithm and
algorithm continue to
ical roles. There are also
iseful generalizations

her ideas adding to the
e of quantum speedups.

30

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R
evaluations of f.

Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random
input set; use unique-root Grover.

31

What if

Values O

Can mo
negating
negate v

regarding 1994
“These

structing faster

DVEr.

sical problems
uters are the
t ones which
red so far.”

1thm and
continue to
There are also
ralizations
dding to the
tum speedups.

30

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R
evaluations of f.

Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random

input set; use unique-root Grover.

31

W

Va

hat If there are

ues of f, not ju

Can modify algori

negating when f(c

negate when g(f(

1994
ese
faster
lems
the
ich

to
also

V)

the
lups.

30

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization
depend on R = #{roots of f}.

Non-quantum search: ~=2"/R

evaluations of f.
Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random

input set; use unique-root Grover.

31

What if there are many “go

values of f, not just value O

Can modify algorithm: inste
negating when f(q) = 0,
negate when g(f(q)) = 0.

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R
evaluations of f.

Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random

input set; use unique-root Grover.

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

32

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization
depend on R = #{roots of f}.

Non-quantum search: ~2"/R

evaluations of f.
Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis and optimization:
restrict f to a (pseudo)random

input set; use unique-root Grover.

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

32

Some common Grover variants

What if f has many roots?

Can try same algorithm.
Analysis and optimization

depend on R = #{roots of f}.

Non-quantum search: ~2"/R

evaluations of f.
Quantum search: %(2”//?)1/2
quantum evaluations of f.

Alternative approach, instead of

redoing analysis anc
restrict f to a (pseudo)random

input set; use unique-root Grover.

optimization:

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

What if one doesn't know R?

Can modify algorithm. Or repeat
original algorithm with sequence

of guesses for R, starting with

2" and decreasing exponentially.

Approximation of R suffices.

32

ymmon Grover variants

f has many roots?

same algorithm.

and optimization
on R = #{roots of f}.

ntum search: ~2"/R

ns of f.

n search: ~(2"/R)1/2

1 evaluation

lve approac

s of f.

n, Instead of

analysis anc

f to a (pseudo)random

L use uniqu

e-root Grover.

optimization:

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

What if one doesn't know R?

Can modify algorithm. Or repeat
original algorithm with sequence

of guesses for R, starting with

2" and decreasing exponentially.

Approximation of R suffices.

32

More inf
quantun

powerful

Say u +—
but have
u, u', (e
specifiec
Want to

Non-que
Start wi
Replace

repeat e
check if

Quantur

over variants

1y roots?

rithm.

nization
{roots of f}.

ch: ~2"/R
%(2”//?)1/2
)ns of f.

ch, instead of

1d optimization:
sudo)random
iue-root Grover.

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

What if one doesn't know R?

Can modify algorithm. Or repeat
original algorithm with sequence

of guesses for R, starting with

2" and decreasing exponentially.

Approximation of R suffices.

32

More interesting g
quantum walks. S
powerful than orig

Say u— f(u) isn’
but have a very fa
u,u, f(u)— f(u"
specified set of “n
Want to find “goc

Non-quantum rani
Start with one u; .
Replace u by rand
repeat enough tim

check if good; kee

Quantum walk: (r

s

1

/2

d of

ation:
om

rover.

31

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

What if one doesn't know R?

Can modify algorithm. Or repeat
original algorithm with sequence

of guesses for R, starting with

2" and decreasing exponentially.

Approximation of R suffices.

32

More interesting generalizat
quantum walks. Seems mor:
powerful than original Grove

Say u+— f(u) isn't very fast
but have a very fast algorith
u,u, f(u) — f(u") for u' in
specified set of “neighbors”
Want to find “good” f(u).

Non-quantum random walk:
Start with one u; compute f
Replace u by random neight
repeat enough times for mix

check if good; keep repeatin

Quantum walk: (repetitions

What if there are many “good”

values of f, not just value 07

Can modify algorithm: instead of
negating when f(q) = 0,
negate when g(f(q)) = 0.

Or simply apply original Grover to
the composition g — g(f(q)).

What if one doesn't know R?

Can modify algorithm. Or repeat
original algorithm with sequence

of guesses for R, starting with

2" and decreasing exponentially.

Approximation of R suffices.

32

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say v+ f(u) isn't very fast

but have a very fast algorithm

u,u, f(u) =

specified set of “neighbors” of u.

Want to find

f(u") for v’ in a

“good” f(u).

Non-quantum random walk:

Start with on
Replace u by
repeat enoug

e u; compute f(u).
random neighbor;

n times for mixing;

check it gooc

Quantum walk: (repetitions)

. keep repeating.
1/2

33

there are many “good”
f f, not just value 07

dify algorithm: instead of
- when f(q) =0,

vhen g(f(q)) = 0.

ly apply original Grover to
position g — g(f(q)).

one doesn't know R?

dify algorithm. Or repeat
algorithm with sequence
es for R, starting with
lecreasing exponentially.
nation of R suffices.

32

More interesting generalization:
quantum walks. Seems more
powerful than original Grover.

Say u+ f(u) isn't very fast
but have a very fast algorithm
u,u, f(u) = f(u") for u' in a

specified set of “neighbors” of u.

Want to find “good” f(u).

Non-quantum random walk:
Start with one u; compute f(u).
Replace u by random neighbor;
repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)!/2.

33

Extreme
Complet
Recomp
Mixes In

many “good”
st value 07

‘hm: instead of
1) =0,
q)) = 0.

iginal Grover to
— g(f(q)).

't know R?

hm. Or repeat
with sequence
tarting with
exponentially.
R suffices.

32

More interest

ing generalization:

quantum walks. Seems more

powerful than original Grover.

Say v+ f(u) isn't very fast

but have a very fast algorithm

u,u', f(u) =

specified set of “neighbors” of u.

Want to find

f(u") for v’ in a

“good” f(u).

Non-quantum random walk:

Start with on
Replace u by
repeat enoug

e u; compute f(u).
random neighbor;
n times for mixing;

check it gooc

. keep repeating.

Quantum walk: (repetitions)!/2.

33

Extreme example
Completely unrest
Recompute f at e
Mixes instantly. S

od”

ad of

ver to
).

")

epeat
ence
th

ally.

32

More interesting generalization:
quantum walks. Seems more
powerful than original Grover.

Say u+ f(u) isn't very fast
but have a very fast algorithm
u,u, f(u) — f(u") for u' in a

specified set of “neighbors” of u.

Want to find “good” f(u).

Non-quantum random walk:
Start with one u; compute f(u).
Replace u by random neighbor;
repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)!/2.

33

Extreme example of walk:
Completely unrestricted neig
Recompute f at each step.
Mixes instantly. Same as Gr

More interest

ing generalization:

quantum walks. Seems more

powerful than original Grover.

Say u+ f(u) isn't very fast

but have a very fast algorithm

u,u', f(u) =

specified set of “neighbors” of u.

Want to find

f(u") for v’ in a

“good” f(u).

Non-quantum random walk:

Start with one u; compute f(u).

Replace u by
repeat enoug

random neighbor;
n times for mixing;

check it gooc

Quantum walk: (repetitions)

. keep repeating.

1/2

33

Extreme example of walk:
Completely unrestricted neighbors.
Recompute f at each step.

Mixes instantly. Same as Grover.

34

More interesting generalization:
quantum walks. Seems more
powerful than original Grover.

Say u+ f(u) isn't very fast

but have a very fast algorithm
u,u, f(u) = f(u") for u' in a
specified set of “neighbors” of u.
Want to find “good” f(u).

Non-quantum random walk:
Start with one u; compute f(u).
Replace u by random neighbor;
repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)!/2.

33

34
Extreme example of walk:

Completely unrestricted neighbors.
Recompute f at each step.
Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2" inputs,
exactly one collision {p, q}.

“Collision”: p # q; f(p) = f(q).
Problem: find this collision.

Generic non-quantum algorithm:
nearly 2" calls to f.

Ambainis, using quantum walk:
~221/3 calls to f.

eresting generalization:
1 walks. Seems more
“than original Grover.

- f(u) isn't very fast

> a very fast algorithm

1) — f(u") for v’ in a

| set of "neighbors” of u.
find “good” f(u).

ntum random walk:

th one u; compute f(u).
u by random neighbor;

nough times for mixing;

good; keep repeating.

n walk: (repetitions)!/2.

33

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.
Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2" inputs,
exactly one collision {p, q}.

“Collision”: p # q; f(p) = f(q).
Problem: find this collision.

Generic non-quantum algorithm:
nearly 2" calls to f.

Ambainis, using quantum walk:
~221/3 calls to f.

34

Sketch ¢

For § C
define @

T = #{.
T is the

Define °
Chance

To walk
delete ol

Non-qus
then Inn

Quantur
Take o 1

eneralization:
eems more
inal Grover.

t very fast

st algorithm

) for v’ in a
eighbors” of u.

d” f(u).

dJom walk:
compute f(u).
om neighbor;
es for mixing;
p repeating.

epetitions)!/2.

33

Extreme example of walk:

Completely unrestricted

neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting examp
Ambainis distinctness a

Say f has 2" inputs,

exactly one collision {p,

€.

gorithm.

q}-

“Collision”: p # q; f(p) = f(q).
Problem: find this collision.

Generic non-quantum algorithm:

nearly 2" calls to f.

Ambainis, using quantum walk:

~22n/3 alls to f.

34

Sketch of Ambain

For S C {inputs}
define p(S) = (T,
T =F{f(i):] €

T 1s the multiset «

Define “good” to
Chance of good: ({

To walk from S tc
delete one elt, ins¢

Non-quantum sett
then inner-outer |
Quantum: o: ther
Take o to minimiz

on:

r.

)OF;
Ing;

)1/2_

33

Extreme example of walk:

Completely unrestricted

neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting examp
Ambainis distinctness a

Say f has 2" inputs,

exactly one collision {p,

€.

gorithm.

q}-

“Collision”: p # q; f(p) = f(q).
Problem: find this collision.

Generic non-quantum algorithm:

nearly 2" calls to f.

Ambainis, using quantum walk:

~221/3 3lls to f.

34

Sketch of Ambainis details:

For S C {inputs} with #S -
define (S) = (7, T) where
T =#{f(i): 1 € S} and

T is the multiset of f(i) for

Define “good” to mean 7 <
Chance of good: (o/2")?.

To walk from S to neighbor
delete one elt, insert one elt

Non-quantum setup cost o;
then inner-outer loops o - (2
Quantum: o: then o1/2 . (2
Take o to minimize o + 2"/

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.
Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2" inputs,
exactly one collision {p, q}.

“Collision”: p # q; f(p) = f(q).
Problem: find this collision.

Generic non-quantum algorithm:
nearly 2" calls to f.

Ambainis, using quantum walk:
~221/3 calls to f.

34

Sketch of Ambainis details:

For S C {inputs} with #S =&,
define (S) = (7, T) where
T=#{f(i):i €S} and

T is the multiset of f(i) for i € S.

Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S’
delete one elt, insert one elt.

Non-quantum setup cost o;

then inner-outer loops o - (2" /0)?.

Quantum: o; then o1/2.(2"/0).
Take o to minimize o + 2" /o1/2.

35

example of walk:

ely unrestricted

neighbors.

ute f at each step.

stantly. Same as Grover.

eresting examp
s distinctness a

s 2™ inputs,

one collision {p,

€.

gorithm.

q}-

n": p#q; f(p) = f(q).
- find this collision.

non-quantum algorithm:

1 calls to f.

s, using quantum walk:

~alls to f.

34

Sketch of Ambainis details:

For S C {inputs} with #S =&,
define (S) = (7, T) where
T =#{f(i): i €S} and

T is the multiset of f(i) for i € S.

Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S’
delete one elt, insert one elt.

Non-quantum setup cost o;

then inner-outer loops o - (2" /5)?.

Quantum: o; then o1/2.(2"/0).
Take o to minimize o + 2" /o1/2.

35

Some cc

Simon u
Shor use
for factc
Can use
“Contini

with car

In all of
naturally
satisfyin
Watch ¢
and exac

of walk:

ricted

neighbors.

ach step.

ame as Grover.

Xamp

1ESS A

S,

n {p.

€.

gorithm.

q}-

; f(p) = 1(q).

- collision.

um algorithm:

f.

uantum walk:

34

Sketch of Ambainis details:

For S C {inputs} with #S =&,
define (S) = (7, T) where
T=#{f(i):i €S} and

T is the multiset of f(i) for i € S.

Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S':
delete one elt, insert one elt.

Non-quantum setup cost o;

then inner-outer loops o - (2" /0)?.

Quantum: o; then o1/2.(2"/0).

Take o to minimize o + 2" /o1/2.

35

Some common Sh

Simon used additi
Shor used additior
for factorization o
Can use addition i
“Continuous’ vers
with careful precis

In all of these algc
naturally find “rar
satisfying f(u) =
Watch out for hyf
and exact meaning

‘hbors.

over.

hm.

thim:

alk:

34

Sketch of Ambainis details:

For S C {inputs} with #S = o,
define (S) = (7, T) where
T =#{f(i): i €S} and

T is the multiset of f(i) for i € S.

Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S’
delete one elt, insert one elt.

Non-quantum setup cost o;

then inner-outer loops o - (2" /5)?.

Quantum: o; then o1/2.(2"/0).

Take o to minimize o + 2" /o1/2.

35

Some common Shor variant:

Simon used addition in (Z/-
Shor used addition in Z or &
for factorization or discrete
Can use addition in Z".
“Continuous’ version: R"
with careful precision handli

In all of these algorithmes,
naturally find “random” s
satisfying f(u) = f(u +s).
Watch out for hypotheses o
and exact meaning of “rand

Sketch of Ambainis details:

For S C {inputs} with #S = o,
define (S) = (7, T) where
T=#{f(i):i €S} and

T is the multiset of f(i) for i € S.

Define “good” to mean 7 < 0.
Chance of good: (o/2")?.

To walk from S to neighbor S’
delete one elt, insert one elt.

Non-quantum setup cost o;
then inner-outer loops o - (2" /0)?.
Quantum: o; then o1/2 . (2"/0).

Take o to minimize o + 2" /o1/2.

35

36
Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?
for factorization or discrete logs.
Can use addition in Z".
“Continuous” version: R"”

with careful precision handling.

In all of these algorithms,
naturally find “random” s
satisfying f(u) = f(u+ s).
Watch out for hypotheses on f
and exact meaning of “random”.

f Ambainis details:
{inputs} with #S =

(S) = (7, T) where
F(i) : i€ S} and

multiset of f(i) for i € S.

g,

good” to mean T < 0.

of good: (a/2").

from S to neighbor S’

ne elt, insert one elt.

ntum setup cost o;

er-outer loops o -(2"/0)?.

n: o; then o1/2.(2"/0).

0 minimize ¢ + 2" /0

1/2

35

Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?2

for factorization or discrete logs.

Can use addition in Z".
“Continuous” version: R"
with careful precision handling.

In all of these algorithmes,
naturally find “random” s
satisfying f(u) = f(u + s).
Watch out for hypotheses on f

and exact meaning of “random’.

36

What if
deﬁned«
NOot nece

Termino
also call
of f unc
action.
the “hid
(HSP) i

s details:

with #S5 = o,
T') where

>} and

of f(i) fori € S.

mean 7 < O.
o /2m)%.

) neighbor S
rt one elt.

Ip cost o,

oops o - (2" /5)?.
 ol/2.(2/a).
e o+ 2"/gl/2

35

Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?2

for factorization or discrete logs.

Can use addition in Z".
“Continuous”’ version: R"”
with careful precision handling.

In all of these algorithms,
naturally find “random” s
satisfying f(u) = f(u + s).
Watch out for hypotheses on f

and exact meaning of “random”.

36

What if the functi
defined on a more

not necessarily cor

Terminology: {pel
also called the ‘st

of f under the nat
action. In quantui
the "hidden-subgr.
(HSP) is to find t

n/o.)2_

/o).

1/2

35

Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?2

for factorization or discrete logs.

Can use addition in Z".
“Continuous” version: R"
with careful precision handling.

In all of these algorithmes,
naturally find “random” s
satisfying f(u) = f(u + s).
Watch out for hypotheses on f

and exact meaning of “random’.

36

What if the function f is
defined on a more general g
not necessarily commutative

Terminology: {periods of f]

also called the “stabilizer gr

of f under the natural grouy

action. In quantum algorith

the “hidden-subgroup proble
(HSP) is to find this group.

Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?2

for factorization or discrete logs.

Can use addition in Z".
“Continuous”’ version: R"”
with careful precision handling.

In all of these algorithms,
naturally find “random” s
satisfying f(u) = f(u + s).
Watch out for hypotheses on f

and exact meaning of “random”.

36

What if the function f is
defined on a more general group,
not necessarily commutative?

Terminology: {periods of f} is

also called the “stabilizer group”

group
action. In quantum algorithms,

of f under the natura

the “hidden-subgroup problem”
(HSP) is to find this group.

37

Some common Shor variants

Simon used addition in (Z/2)".
Shor used addition in Z or Z?2

for factorization or discrete logs.

Can use addition in Z".
“Continuous”’ version: R"”
with careful precision handling.

In all of these algorithms,
naturally find “random” s
satisfying f(u) = f(u + s).
Watch out for hypotheses on f

and exact meaning of “random”.

36

What if the function f is
defined on a more general group,
not necessarily commutative?

Terminology: {periods of f} is

also called the “stabilizer group”

group
action. In quantum algorithms,

of f under the natura

the “hidden-subgroup problem”
(HSP) is to find this group.

Shor's idea + extra work
handles arbitrary finite groups
with O(n) evaluations of f.
Massive caveat here: also need

huge f-independent computation!

37

ymmon Shor variants

sed addition in (Z/2)".
d addition in Z or Z?
rization or discrete logs.
addition in Z".

1ous’ version: R"

etul precision handling.

these algorithms,

/ find “random” s

g f(u) =f(u+s).

ut for hypotheses on f

t meaning of “random’.

36

What if the function f is
defined on a more general group,
not necessarily commutative?

Terminology: {periods of f} is

also called the “stabilizer group”

group
action. In quantum algorithms,

of f under the natura

the “hidden-subgroup problem”
(HSP) is to find this group.

Shor's idea + extra work
handles arbitrary finite groups
with O(n) evaluations of f.
Massive caveat here: also need

huge f-independent computation!

37

Kuperbe
reduce t
at some
Total co
but sube
evaluatic

Shor alr:

subgrou
For hard

the “hid
find s In
given tw
satisfyin

or variants

on in (Z/2)".
y in Z or Z2

- discrete logs.

n Z".
ion: R

lon handling.

rithms,
dom” s
F(u—+s).
otheses on f

r of “random” .

36

What if the function f is

defined on a mo

re general group,

not necessarily commutative?

Terminology: {periods of f} is

also called the “

of f under the n

stabilizer group”

atural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find

this group.

Shor's idea 4+ extra work

handles arbitrary finite groups

with O(n) evaluations of f.

Massive caveat

here: also need

huge f-indepenc

ent computation!

37

Kuperberg: For di
reduce the extra c
at some cost in f
Total cost Is supel
but subexponentia

evaluations of f

Shor already hand
subgroups of the c
For hard cases, Kt
the “hidden-shift
find s in a commu
given two functior
satisfying f1(u) =

ng.

n f

om .

36

What if the function f is
defined on a more general group,

not necessarily commutative?

Terminology: {periods of f} is

also called t
of f under t

ne “stabi

ne natura

action. In quantum a

izer group’
group

gorithms,

the “hidden-subgroup problem”
(HSP) is to find this group.

Shor’'s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f.

Massive caveat
huge f-indepenc

NEre.

also need

ent computation!

37

Kuperberg: For dihedral grc

reduce the extra computatic

at some cost in f evaluation

Total cost Is superpolynomi:
but subexponential: 20(v/n)

evaluations of f

Shor already hand

overhead

€S SOME €

subgroups of the dihedral gr

For hard cases, Kuperberg s
the “hidden-shift problem":
find s in a commutative gro

given two functions fp, f1

satisfying f1(u) =

fo(u

s).

What if the

function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f} is

also called t
of f under t

ne “stabilizer group”

ne natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to

find this group.

Shor's idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f.

Massive caveat here: also need

huge f-independent computation!

37

38
Kuperberg: For dihedral group,

reduce the extra computation
at some cost in f evaluations.
Total cost Is superpolynomial

but subexponential: 20(v/n)
evaluations of f 4+ overhead.

Shor already handles some easy

subgroups of the dihedral group.
For hard cases, Kuperberg solves
the “hidden-shift problem":

find s in a commutative group
given two functions fp, f1

satisfying fi(u) = fo(u + s).

the function f iIs

on a more general group,

ssarily commutative?

logy: {perioc

ed t
er t

ne “stabi

n quantum a

ne natura

s of f}is

izer group’
group

gorithms,

den-subgroup problem”

5 to find this group.

lea + extra work

arbitrary finite groups

n) evaluations of f.

caveat
ndepenc

NEre.

also need

ent computation!

37

Kuperberg: For dihedral group,
reduce the extra computation
at some cost in f evaluations.
Total cost Is superpolynomial

but subexponential: 20(v/n)
overhead.

evaluations of f

Shor already handles some easy

subgroups of the dihedral group.
For hard cases, Kuperberg solves
the “hidden-shift problem":

find s in a commutative group
given two functions fy, f1

satisfying fi(u) = fo(u + s).

38

The img

2021.12.
to http:
IS encryy
by AES-
using a |
by the X
with the
by an E(
with the
by an R
which In
by an R:
which 1s
SHA-25¢

on f is
general group,

nmutative?

iods of f} is

abilizer group”

group
n algorithms,

ura

oup problem”
1S group.

a work

Inite groups
ons of f.

re: also need
1t computation!

37

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost Is superpolynomial
but subexponential: 20(v/n)

evaluations of f

Shor already hand

overhead.

€S Ssome €asy

subgroups of the dihedral group.

For hard cases, Kuperberg solves
the “hidden-shift problem":
find s in a commutative group

given two functions fp, f1

satisfying f1(u) = fo(u + s).

38

The impact on cn

2021.12: A Firefo:
to https://goog
Is encrypted and a
by AES-128-GCM
using a key exchar
by the X25519 EC
with the key exch:
by an ECDSA-NIS
with the signing k
by an RSA-2048 k
which In turn Is ce
by an RSA-4096 k
which is trusted b
SHA-256, SHA-38

roup,

IS
Oup”

ms,

Em”

JS

~ed
ation!

37

Kuperberg: For dihedral group,
reduce the extra computation
at some cost in f evaluations.
Total cost Is superpolynomial

but subexponential: 20(v/n)
evaluations of f 4+ overhead.

Shor already handles some easy

subgroups of the dihedral group.
For hard cases, Kuperberg solves
the “hidden-shift problem":

find s in a commutative group
given two functions fy, f1

satisfying fi(u) = fo(u + s).

38

The impact on cryptography

2021.12: A Firefox connecti

to https://google.com

Is encrypted and authenticat
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH syster
with the key exchange signe
by an ECDSA-NIST-P-256 |
with the signing key certifiec
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also apr

Kuperberg: For dihedral group,
reduce the extra computation
at some cost in f evaluations.
Total cost Is superpolynomial

but subexponential: 20(v/n)
evaluations of f 4+ overhead.

Shor already handles some easy

subgroups of the dihedral group.
For hard cases, Kuperberg solves
the “hidden-shift problem™:

find s in a commutative group
given two functions fy, f1

satisfying fi(u) = fo(u + s).

38

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

39

rg: For dihedral group,
he extra computation
cost in f evaluations.
st 1s superpolynomial
xponential: 20(v/n)
ons of f + overhead.

2ady handles some easy

os of the dihedral group.
cases, Kuperberg solves
den-shift problem"”:

a commutative group
o functions fp, f

g f1(u) = fo(u + s).

38

39
The impact on cryptography

2021.12: A Firefox connection
to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

Shor's a

ECC in

hedral group,
omputation
evaluations.
‘polynomial

|- 20(vn)

- overhead.

€S Ssome €asy

lihedral group.
Iperberg solves
oroblem”™ :
tative group

s fp, f1

fo(u S).

38

39
The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

Shor’s algorithm L
ECC in polynomia

asy
oup.
olves

up

38

39
The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

Shor's algorithm breaks RSZ
ECC in polynomial time. Pa

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

39

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

40

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

39

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

40

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

39

40
Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil
tell us that they've built

arge-scale attackers

a big enough quantum computer?

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,
with the key exchange signed
by an ECDSA-NIST-P-256 key,
with the signing key certified
by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.
SHA-256, SHA-384 also appear.

39

40
Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil
tell us that they've built

arge-scale attackers

a big enough quantum computer?

Also, leaks show that they're
already recording ciphertexts
that they'll try to decrypt later.

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

Is encrypted and authenticated
by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified
by an RSA-2048 key,
which in turn is certified

by an RSA-4096 key,
which is trusted by Firefox.

SHA-256, SHA-384 also appear.

39

40
Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil large-scale attackers

tell us that they've built
a big enough quantum computer?

Also, leaks show that they're
already recording ciphertexts
that they'll try to decrypt later.

Also, upgrading everything
to post-quantum cryptography

won't happen instantaneously.

act on cryptography

A Firefox connection
s://google.com

ted and authenticated
128-GCM,

key exchanged

25519 ECDH system,
key exchange signed
_DSA-NIST-P-256 key,
signing key certified
>A-2048 key,

turn is certitied
>A-4096 key,

trusted by Firefox.

), SHA-384 also appear.

39

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil
tell us that they've built

arge-scale attackers

a big enough quantum computer?

Also, leaks show that they're
already recording ciphertexts
that they'll try to decrypt later.

Also, upgrading everything
to post-quantum cryptography

won't happen instantaneously.

40

“Is the |
to be a

— 2019
"How tc
Integers
million r
an Impre
algorithr
assumpt
supercor

Most of
correctic
qubits t«

qubits Ir

'ptography

X connection
le.com
uthenticated
1ged

DH system,
Inge signed
T-P-256 key,
ey certified
ey,

rtified

ey,
v Firefox.

4 also appear.

39

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil
tell us that they've built

arge-scale attackers

a big enough quantum computer?

Also, leaks show that they're
already recording ciphertexts
that they'll try to decrypt later.

Also, upgrading everything
to post-quantum cryptography

won't happen instantaneously.

40

“Is the polynomial
to be a real threat

— 2019 Gidney-E
"How to factor 20
Integers Iin 8 hours
million noisy qubit
an improved versic
algorithm with “pl
assumptions for la

superconducting g

Most of the cost I
correction, using r
qubits to simulate

qubits inside Shor’

I =

on

ed

ear.

39

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

"But nobody has a big enough
quantum computer yet!”

— Wil large-scale attackers

tell us that they've built
a big enough quantum computer?

Also, leaks show that they're
already recording ciphertexts
that they'll try to decrypt later.

Also, upgrading everything
to post-quantum cryptography

won't happen instantaneously.

40

“Is the polynomial small enc
to be a real threat?”

— 2019 Gidney—Ekera
“How to factor 2048 bit RS.
integers in 8 hours using 20
million noisy qubits” combir
an improved version of Shor
algorithm with “plausible ph
assumptions for large-scale
superconducting qubit platfc

Most of the cost is for error
correction, using many Impe
qubits to simulate the perfes

qubits inside Shor's algorithi

Shor’s algorithm breaks RSA and
ECC in polynomial time. Panic!

"But nobody has a big enough

quantum

computer yet!”

— Wil large-scale attackers

tell us that they've built

a big enough quantum computer?

Also, leaks show that they're

already recording ciphertexts

that they'll try to decrypt later.

Also, upgrading everything

to post-C

uantum cryptography

won't ha

open instantaneously.

40

“Is the polynomial small enough
to be a real threat?”

— 2019 Gidney—Ekera

"How to factor 2048 bit RSA
iIntegers in 8 hours using 20
million noisy qubits” combines
an improved version of Shor's
algorithm with “plausible physical
assumptions for large-scale

superconducting qubit platforms’ .

Most of the cost is for error
correction, using many imperfect
qubits to simulate the perfect

qubits inside Shor’s algorithm.

41

lgorithm breaks RSA and
bolynomial time. Panic!

body has a big enough
' computer yet!”

large-scale attackers
nat they've built
ough quantum computer?

ks show that they 're
recording ciphertexts
v'll try to decrypt later.

grading everything
quantum cryptography

)ppen Iinstantaneously.

40

“Is the polynomial small enough
to be a real threat?”

— 2019 Gidney—Ekera

"How to factor 2048 bit RSA
integers in 8 hours using 20
million noisy qubits’ combines
an improved version of Shor’s
algorithm with “plausible physical
assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error
correction, using many imperfect
qubits to simulate the perfect

qubits inside Shor’s algorithm.

41

Same ps
million ¢
log in F
and (p -

(Other ¢
256-bit

Useful ¢

modular
CP
Reasona

Inte

compute
overall c

will be Z

reaks RSA and
| time. Panic!

2 big enough
r yet!”

attackers
e built
tum computer?

hat they're
cIphertexts
decrypt later.

rerything

ryptography
antaneously.

40

“Is the polynomial small enough
to be a real threat?”

— 2019 Gidney—Ekera

“How to factor 2048 bit RSA
Integers in 8 hours using 20
million noisy qubits” combines
an improved version of Shor's
algorithm with “plausible physical
assumptions for large-scale

superconducting qubit platforms’ .

Most of the cost is for error
correction, using many imperfect
qubits to simulate the perfect

qubits inside Shor’s algorithm.

41

Same paper says 7
million qubits for :
log in F} if pis a
and (p—1)/2is 3

(Other papers: loy
256-bit elliptic-cur

Usefu
modular exponent

CPU core is
Reasonable estima

comparison

Inte

computer will cost
overall cost of qut
will be 2*9x cost

\ and

nic!

yuter?

€)

ter.

hy

40

“Is the polynomial small enough
to be a real threat?”

— 2019 Gidney—Ekera

"How to factor 2048 bit RSA
integers in 8 hours using 20
million noisy qubits” combines
an improved version of Shor’s
algorithm with “plausible physical
assumptions for large-scale

superconducting qubit platforms’.

Most of the cost is for error
correction, using many imperfect
qubits to simulate the perfect

qubits inside Shor’s algorithm.

41

Same paper says 7 hours wi
million qubits for a big discr
log in Fj if pis a 2048-bit
and (p — 1)/2 is also prime.

(Other papers: lower costs f
256-bit elliptic-curve discret:

Usefu
modular exponentiation on :

CPU core is >2%0x fac

Reasonable estimates: quan
220

comparison: non-qua

Inte
computer will cost X MO
overall cost of qubit operati
will be 249 cost of bit ope

41 42
“Is the polynomial small enough Same paper says 7 hours with 26

to be a real threat?” million qubits for a big discrete

— 2019 Gidney—Ekera log in F}, if pis a 2048-bit prime

“How to factor 2048 bit RSA
iIntegers in 8 hours using 20 (Other papers: lower costs for
million noisy qubits” combines 256-bit elliptic-curve discrete log.)

and (p —1)/2 is also prime.

an improved version of Shor's .
Useful comparison: non-quantum

algorithm with “plausible physical o
modular exponentiation on an

Intel CPU core is >220x faster.

Reasonable estimates: quantum
220

assumptions for large-scale
superconducting qubit platforms’ .

Most of the cost is for error computer will cost X MOre;
correction, using many imperfect overall cost of qubit operation
qubits to simulate the perfect will be 2*9x cost of bit operation.

qubits inside Shor’s algorithm.

yolynomial small enough
real threat?”

Gidney—Ekera

 factor 2048 bit RSA

in 8 hours using 20

10isy qubits’ combines
oved version of Shor's

n with “plausible physical
ions for large-scale

\ducting qubit platforms”.

the cost is for error

n, using many imperfect
> simulate the perfect
iside Shor's algorithm.

41

Same paper says 7 hours with 26
million qubits for a big discrete
log in F} if p is a 2048-bit prime
and (p — 1)/2 is also prime.

(Other papers: lower costs for
256-bit elliptic-curve discrete log.)

Usefu
modular exponentiation on an
CPU core is >2%0x faster.

Reasonable estimates: quantum
220

comparison: non-quantum

Inte

computer will cost X MOre;

overall cost of qubit operation

will be 240 % cost of bit operation.

42

Some re
e | ower-
e Less n
e Better
e Better
e Better

Beyond
each alg
quantun
CCNOT
reversibi
with hig
error-cot
size of ¢

small enough
_711

kera

48 bit RSA

> using 20

s’ combines

on of Shor's
ausible physical
rge-scale

ubit platforms”.

s for error
nany imperfect
the perfect

s algorithm.

41

Same paper says 7 hours with 26
million qubits for a big discrete
log in Fj if p is a 2048-bit prime
and (p — 1)/2 is also prime.

(Other papers: lower costs for
256-bit elliptic-curve discrete log.)

Usefu
modular exponentiation on an
CPU core is >2%0x faster.

Reasonable estimates: quantum
220

comparison: non-quantum

Inte

computer will cost X MOre;

overall cost of qubit operation

will be 249x cost of bit operation.

42

Some reasons 249
e | ower-cost qubr

e |Less noise in qu
e Better qubit cor
e Better error-cort
e Better reversibili

Beyond modular e
each algorithm ne
quantum/non-qua
CCNOT costs > 1

reversibility convel

with high-level alg
error-correction co
size of computatic

ugh

41

Same paper says 7 hours with 26
million qubits for a big discrete
log in F} if p is a 2048-bit prime
and (p —1)/2 is also prime.

(Other papers: lower costs for
256-bit elliptic-curve discrete log.)

Usefu
modular exponentiation on an
CPU core is >2%0x faster.

Reasonable estimates: quantum
220

comparison: non-quantum

Inte

computer will cost X MOre;

overall cost of qubit operation

will be 240 % cost of bit operation.

42

Some reasons 2%0 can imprc
e | ower-cost qubits.

e Less noise In qubits.

e Better qubit connectivity.
e Better error-correction me
e Better reversibility conver:

Beyond modular exponentia
each algorithm needs analys
quantum/non-quantum cost

CCNOT costs >100x CNO
reversibility conversions inte

with high-level algorithm de

error-correction cost depend
size of computation; and so

Same paper says 7 hours with 26
million qubits for a big discrete
log in Fj if p is a 2048-bit prime
and (p — 1)/2 is also prime.

(Other papers: lower costs for
256-bit elliptic-curve discrete log.)

Usefu
modular exponentiation on an
CPU core is >2%0x faster.

Reasonable estimates: quantum
220

comparison: non-quantum

Inte

computer will cost X MOre;
overall cost of qubit operation

will be 249x cost of bit operation.

42

43
Some reasons 249 can improve:

e | ower-cost qubits.

e Less noise in qubits.

e Better qubit connectivity.

e Better error-correction methods.
e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of
quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

\per says 7 hours with 26
jubits for a big discrete
*if pis a 2048-bit prime
-1)/2 is also prime.

vapers: lower costs for
lliptic-curve discrete log.)

omparison: non-quantum

exponentiation on an

220 faster.

U core is >
ble estimates: quantum
r will cost 22V x more;
ost of qubit operation

40 cost of bit operation.

42

240 can Improve:

Some reasons
e | ower-cost qubits.
e | ess noise in qubits.

e Better qubit connectivity.

e Better error-correction methods.

e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions Interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

43

Further

Typical :
Guess tf
see If gu
to <HTMI
If not, ti

Non-qus
n 2127
which sc
for most
(Bitcoin

" hours with 26
) big discrete
2048-bit prime
Iso prime.

ver costs for
ve discrete log.)

. non-quantum
lation on an
~>220 faster.

tes: quantum

220 5 more;

.
4

1t operation

of bit operation.

42

240 can Improve:

Some reasons
e | ower-cost qubits.
e Less noise in qubits.

e Better qubit connectivity.

e Better error-correction methods.

e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

43

Further impact: G

Typical symmetric
Guess the secret A
see If guess decryy
to <HTML><HEAD><r
If not, try further

Non-quantum attz:
in 2127 guesses on
which sounds too

for most people tc
(Bitcoin: ~2%2 ha

th 26
ete

yime

or
e log.)

ntum
1N
ter.
tum
re;

on

ration.

42

240 can Improve:

Some reasons
e | ower-cost qubits.
e | ess noise Iin qubits.

e Better qubit connectivity.

e Better error-correction methods.

e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions Interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

43

Further impact: Grover

Typical symmetric-crypto at
Guess the secret AES-128 k
see If guess decrypts ciphert
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succee
in 2127 guesses on average,
which sounds too expensive
for most people to worry ab

(Bitcoin: ~29? hashes/year.

240 can Improve:

Some reasons
e | ower-cost qubits.
e Less noise in qubits.

e Better qubit connectivity.

e Better error-correction methods.

e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

43

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive

for most people to worry about.

(Bitcoin: ~29% hashes/year.)

44

240 can Improve:

Some reasons
e | ower-cost qubits.
e Less noise in qubits.

e Better qubit connectivity.

e Better error-correction methods.

e Better reversibility conversions.

Beyond modular exponentiation:
each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100x CNOT;
reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on
size of computation; and so on.

43

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive

for most people to worry about.

(Bitcoin: ~29% hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

asons 240

can Improve:
-cost qubits.
oise In qubits.

“qubit connectivity.

“error-correction methods.

“reversibility conversions.

modular exponentiation:
orithm needs analysis of

1/non-quantum cost ratio.

costs >100x CNOT;
Ity conversions Interact

n-level algorithm details;

rection cost depends on
omputation; and so on.

43

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive
for most people to worry about.

(Bitcoin: ~292 hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panicl!

44

Quantur
~21° qu
Similar «
Attack c

can Improve:
(S.

DIts.
nectivity.

ection methods.

ty conversions.

xponentiation:
eds analysis of

ntum cost ratio.

JOx CNOT:

SIONS Interact
orithm details:

st depends on
n: and so on.

43

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive
for most people to worry about.

(Bitcoin: ~29% hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

Quantum AES ev:
~21° qubit operat
Similar cost to 2°°
Attack costs ~211

VE.

thods.

10NS.

tion:
Is of

' ratlo.

ract
tails;
S on
on.

43

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive
for most people to worry about.

(Bitcoin: ~29? hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panicl!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operz
Attack costs ~2119 bit oper

Further impact: Grover

Typical symmetric-crypto attack:
Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive
for most people to worry about.

(Bitcoin: ~29? hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

Quantum AES evaluation:

~21° qubit operations.

Similar cost to 2°° bit operations.
Attack costs ~2119 bit operations.

45

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive
for most people to worry about.

(Bitcoin: ~29? hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

45

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive

for most people to worry about.

(Bitcoin: ~29? hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bt operations.

45

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,
see If guess decrypts ciphertext
to <HTML><HEAD><met. ..

If not, try further guesses.

Non-quantum attack succeeds
in 2127 guesses on average,
which sounds too expensive

for most people to worry about.

(Bitcoin: ~29? hashes/year.)

Grover takes only 2°% quantum
evaluations of AES. Panic!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bt operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

impact: Grover

symmetric-crypto attack:

e secret AES-128 key,
ess decrypts ciphertext
><HEAD><met. ..

'y further guesses.

ntum attack succeeds
rUeSSes on average,
yunds too expensive

- people to worry about.
. ~2272 hashes/year.)

akes only 2°% quantum
ons of AES. Panic!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1Ins iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bit operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

Can still
than noil
under re
re quant

but muc
than She

Many cc
that AE!

rover

-crypto attack:

\ES-128 key,
ts ciphertext

et. ..

guesses.

\ck succeeds
average,
expensive
 worry about.
shes/year.)

D04 quantum
>. Panic!

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bit operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

Can still be lower
than non-quantun
under reasonable :
re quantum-compi

but much more ex
than Shor RSA-20

Many commentatc
that AES-128 is s:

ds

out.

um

44

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1Ins iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bit operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

Can still be lower cost

than non-quantum AES attz:
under reasonable assumptiot
re quantum-computer progre
but much more expensive

than Shor RSA-2048 attack.

Many commentators conclue
that AES-128 is safe.

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bit operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

46
Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,

but much more expensive
than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

Quantum AES evaluation:
~21° qubit operations.
Similar cost to 2°° bit operations.

Attack costs ~2119 bit operations.

Also, Grover speedup
comes from serial iterations.
204 nanoseconds = 585 years,

and 1ns iterations won't be easy.

To run 210
220

X faster,
need quantum computers:

~2129 bit operations.

To run 299 x faster,
need 240 quantum computers:
~2139 bit operations.

45

Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,

but much more expensive
than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

However, AES-128 exposes many
protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

46

n AES evaluation:
bit operations.
-ost to 2°° bit operations.

osts ~2119 bit operations.

over speedup

om serial 1terations.
seconds = 585 years,
iterations won't be easy.

10 faster,

) quantum computers:
It operations.

20 o« faster,

’ quantum computers:
It operations.

45

Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,
but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

However, AES-128 exposes many
protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

46

Every G
runs Inte
How ma
willing t.
How ma
can be c

for the t
Does thi
qubit-op

luation:
ons.
" bit operations.

Y bit operations.

lup

iterations.

= 535 years,
won't be easy.

r
computers:

ns.

r
computers:

nSs.

45

Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,
but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

However, AES-128 exposes many
protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

46

Every Grover appl
runs into the same
How many years I
willing to wait for
How many serial |
can be carried out

for the target func
Does this outweigl
qubit-op cost and

tions.

ations.

easy.

45

Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,
but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

However, AES-128 exposes many
protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

46

Every Grover application
runs into the same question:
How many years Is the user
willing to wait for results?
How many serial iterations
can be carried out in that ti

for the target function 17
Does this outweigh ratio bet
qubit-op cost and bit-op cos

46 47

Can still be lower cost Every Grover application

than non-quantum AES attack runs into the same questions.
under reasonable assumptions How many years Is the user

re quantum-computer progress, willing to wait for results?

but much more expensive How many serial iterations
than Shor RSA-2048 attack. can be carried out in that time

for the target function 17
Many commentators conclude

that AES-128 is safe. Does this outweigh ratio between

qubit-op cost and bit-op cost?
However, AES-128 exposes many

protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

Can still be lower cost

than non-quantum AES attack
under reasonable assumptions
re quantum-computer progress,
but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude
that AES-128 is safe.

However, AES-128 exposes many
protocols to multi-target attacks
that are already feasible today.
So use AES-256. (Or ChaCha20:
bigger security margin, no timing
attacks, no block-size attacks.)

46

47
Every Grover application

runs into the same questions.
How many years is the user
willing to wait for results?
How many serial iterations
can be carried out In that time

for the target function 17
Does this outweigh ratio between
qubit-op cost and bit-op cost?

For cryptographic risk
management, should presume

some Grover speedup depending
on quantum-computer progress,
but have to account for costs of
quantum evaluation of f.

be lower cost
1-quantum AES attack
asonable assumptions
um-computer progress,
h more expensive

or RSA-2048 attack.

ymmentators conclude
S-128 is safe.

, AES-128 exposes many
s to multi-target attacks
already feasible today.
\ES-256. (Or ChaCha20:
acurity margin, no timing
no block-size attacks.)

46

Every Grover application

runs into the same questions.
How many years Is the user
willing to wait for results?
How many serial iterations
can be carried out in that time

for the target function 17
Does this outweigh ratio between
qubit-op cost and bit-op cost?

For cryptographic risk
management, should presume

some Grover speedup depending
on quantum-computer progress,
but have to account for costs of
quantum evaluation of f.

47

For

Mman

(and qui:

claims o
In the lit
underest

Example

finc
eva
fino

€vVa

s SH
uatie
s SH

uatie

accesses
The litel
physical

where q

cost

' AES attack
Issumptions
Iter progress,
pensive

48 attack.

rs conclude
fe.

) exposes many
-target attacks
asible today.
(Or ChaCha20:
rgin, no timing
size attacks.)

46

Every Grover application

runs into the same questions.
How many years is the user
willing to wait for results?
How many serial iterations
can be carried out in that time

for the target function 17
Does this outweigh ratio between
qubit-op cost and bit-op cost?

For cryptographic risk
management, should presume

some Grover speedup depending
on quantum-computer progress,
but have to account for costs of
quantum evaluation of f.

47

For

many applicat

(and quantum-wal

claims of quantun

In the literature re

underestimating tf

Example: Non-qu:

finc
eva
finc

€va

s SHA-256 col
uations. Quan

s SHA-256 col
uations plus 2

accesses to 25° m

The literature doe

physically plausibl
where quantum al

1ck

1S
=SS,

e

many
acks
ay.
1a20:

ming

46

Every Grover application

runs

into the same questions.

How many years Is the user

willing to wait for results?

How many serial iterations

can
for t

he carried out in that time

ne target function f7

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, shoulc

presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f.

47

For many applications of Gr
(and quantum-walk algorith
claims of quantum speedups
in the literature rely criticall
underestimating the cost of

Example: Non-quantum alg
finds SHA-256 collision in 2

evaluations. Quantum algor

finds SHA-256 collision in 2
285

evaluations plus randorr

285 memory loc:

accesses to
The literature does not stat

physically plausible cost mo

where quantum algorithm w

Every Grover application

runs into the same questions.
How many years is the user
willing to wait for results?
How many serial iterations
can be carried out in that time

for the target function 17
Does this outweigh ratio between
qubit-op cost and bit-op cost?

For cryptographic risk
management, should presume

some Grover speedup depending
on quantum-computer progress,
but have to account for costs of
quantum evaluation of f.

47

For many applications of Grover
(and quantum-walk algorithms),
claims of quantum speedups

in the literature rely critically on
underestimating the cost of f.

Example: Non-quantum algorithm
finds SHA-256 collision in 2123

evaluations. Quantum algorithm

finds SHA-256 collision in 28°
285

evaluations plus random

232 memory locations.

accesses to
The literature does not state a

physically plausible cost model

where quantum algorithm wins.

43

rover application

) the same questions.

ny years Is the user

o wait for results?

ny serial iterations
arried out In that time
arget function 7

s outweigh ratio between
cost and bit-op cost?

tographic risk

nent, should presume

over speedup depending
tum-computer progress,
> to account for costs of
1 evaluation of f.

47

For

many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f.

Example: Non-quantum algorithm

finc
eva
fino

€va

accesses to

s SHA-256 collision in 2128
uations. Quantum algorithm
s SHA-256 collision in 2°°

uations plus 2% random

232 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

43

Post-qu:

What dc
against

2003: C
"post-qL

2006, 2(
2014, 2(
2020, 2(

PQCryp

2015: N
2016: N
Post-Qu
Standare

ication
> questions.
5 the user
results?
terations

in that time
tion 7
1 ratio between
bit-op cost?

risk

1ld presume

lup depending
uter progress,

nt for costs of
n of f.

47

For

many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f.

Example: Non-quantum algorithm

finc
eva
finc

€va

s SHA-256 collision in 2128
uations. Quantum algorithm

s SHA-256 collision in 26°
uations plus 2%° random

accesses to 2%° memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

43

Post-quantum cry

What do cryptogr:
against quantum ¢

2003: Coined the
“post-quantum cr

2006, 2008, 2010,
2014, 2016, 2017,
2020, 2021, ...:

PQCrypto confere

2015: NSA issued
2016: NIST annot
Post-Quantum Cn
Standardization P

Vi

MmeE

ween
17

IS

ding
€ess,
s of

47

For many applications of Grover
(and quantum-walk algorithms),
claims of quantum speedups

in the literature rely critically on
underestimating the cost of f.

Example: Non-quantum algorithm
finds SHA-256 collision in 2128
evaluations. Quantum algorithm

finds SHA-256 collision in 23°
evaluations plus 25° random

accesses to 2%° memory locations.
The literature does not state a
physically plausible cost model

where quantum algorithm wins.

43

Post-quantum cryptography

What do cryptographers do
against quantum computers

2003: Coined the term
“post-quantum cryptograph

2006, 2008, 2010, 2011, 20:
2014, 2016, 2017, 2018, 20:
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statemen
2016: NIST announced
Post-Quantum Cryptograph
Standardization Project.

For many applications of Grover
(and quantum-walk algorithms),
claims of quantum speedups

in the literature rely critically on
underestimating the cost of f.

Example: Non-quantum algorithm
finds SHA-256 collision in 2128
evaluations. Quantum algorithm

finds SHA-256 collision in 28°
evaluations plus 25° random

accesses to 2%° memory locations.
The literature does not state a
physically plausible cost model

where quantum algorithm wins.

43

Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term

“post-quantum cryptography’ .

2006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2018, 2019,
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

49

y applications of Grover
antum-walk algorithms),
f quantum speedups
erature rely critically on
imating the cost of f.

. Non-quantum algorithm
A-256 collision in 2123

ons. Quantum algorithm

A-256 collision in 28°

285 random

ons plus
to 25° memory locations.
-ature does not state a

y plausible cost model

lantum algorithm wins.

43

49
Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term
“post-quantum cryptography’ .

2006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2018, 2019,
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

2017: N
69 comg

ions of Grover
k algorithms),
| speedups

ly critically on
e cost of f.

antum algorithm
lision in 2128
tum algorithm
lision in 282
55 random
=mory locations.
s not state a

> cost model

gorithm wins.

43

49
Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term
“post-quantum cryptography” .

2006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2018, 2019,
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

2017: NIST recein
69 complete subm

over
ms),

y on

orithm
128

ithm
35

|
tions.
3

lel

Ins.

43

Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term

“post-quantum cryptography’ .

20006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2013, 2019,

2020, 2021, ...:
PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

49

2017: NIST received and pc
69 complete submissions.

Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term
“post-quantum cryptography” .

2006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2018, 2019,
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

49

2017: NIST received and posted
69 complete submissions.

50

Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term

“post-quantum cryptography’ .

20006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2013, 2019,

2020, 2021, ...:
PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

49

50
2017: NIST received and posted

69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.
About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Post-quantum cryptography

What do cryptographers do
against quantum computers?

2003: Coined the term

“post-quantum cryptography’ .

2006, 2008, 2010, 2011, 2013,
2014, 2016, 2017, 2018, 2019,
2020, 2021, ...:

PQCrypto conferences.

2015: NSA issued statement.
2016: NIST announced
Post-Quantum Cryptography
Standardization Project.

49

50
2017: NIST received and posted

69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.
About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Much worse status than previous
cryptographic competitions.
Cryptanalysts are overloaded.
Presumably many attacks
haven't been found yet.

antum cryptography

) cryptographers do
quantum computers?

oined the term

lantum cryptography' .

)08, 2010, 2011, 2013,
)16, 2017, 2018, 2019,
)21, ...

to conferences.

SA issued statement.
IST announced
antum Cryptography
lization Project.

49

2017: NIST received and posted
69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.

About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Much worse status than previous
cryptographic competitions.
Cryptanalysts are overloaded.
Presumably many attacks
haven't been found yet.

50

Major di

quantun

1. “Smc
Main de
Try to fi
that can
searches

Some st
built thi
key sear
for SPH
for Clas:
XL for N

enumercd

ptography

aphers do
omputers?

term

yptography" .

2011, 2013,
2013, 2019,

NCES.

statement.
Inced

yptography
roject.

49

2017: NIST received and posted
69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.

About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Much worse status than previous
cryptographic competitions.
Cryptanalysts are overloaded.
Presumably many attacks
haven't been found yet.

50

Major directions s
quantum cryptana

1. “Small” Grover
Main design strate
Try to find attack
that can be viewe
searches for “gooc

Some state-of-the
built this way: qu:
key search; quantt
for SPHINCS+; g
for Classic McElie

XL for MQ systen
enumeration for |a

49

2017: NIST received and posted
69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.

About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Much worse status than previous
cryptographic competitions.
Cryptanalysts are overloaded.
Presumably many attacks
haven't been found yet.

50

Major directions so far in
quantum cryptanalysis of P(

1. “Small” Grover applicatic
Main design strategy:

Try to find attack componet
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attack
built this way: quantum AE
key search; quantum preima
for SPHINCS+; quantum IS
for Classic McEliece; quantu
XL for MQ systems; quantu
enumeration for lattice syste

2017: NIST received and posted
69 complete submissions.

Almost all submissions have
faster attacks known today

even without quantum computers.
About half have been shown to
not meet their security claims.
New attack advances are
continuing to appear in 2021.

Much worse status than previous
cryptographic competitions.
Cryptanalysts are overloaded.
Presumably many attacks
haven't been found yet.

50

51
Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.
Main design strategy:

Try to find attack components
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attacks
built this way: quantum AES
key search; quantum preimages
for SPHINCS+; quantum ISD
for Classic McEliece; quantum
XL for MQ systems; quantum
enumeration for lattice systems.

IST received and posted
lete submissions.

Al submissions have
tacks known today

hout quantum computers.

alf have been shown to
t their security claims.
ack advances are

ng to appear in 2021.

orse status than previous
aphic competitions.
alysts are overloaded.
bly many attacks

been found yet.

50

Major directions so far in
quantum cryptanalysis of PQC:

1. “Small” Grover applications.
Main design strategy:

Try to find attack components
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attacks
built this way: quantum AES
key search; quantum preimages
for SPHINCS+; quantum ISD
for Classic McEliece; quantum
XL for MQ systems; quantum
enumeration for lattice systems.

b1

2. "Big
quantun
Main de
find attz
be viewe

Some st
built thi
costs m:
quantun

quantun

quantun
approacl
quantun

for lattic

ed and posted
ISslons.

s10ns have
wn today

1itum computers.

een shown to
urity claims.

ces are
2ar in 2021,

5 than previous
petitions.
overloaded.
attacks

d yet.

50

Major directions so far in
quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attacks
built this way: quantum AES
key search; quantum preimages
for SPHINCS+; quantum ISD
for Classic McEliece; quantum
XL for MQ systems; quantum

enumeration for lattice systems.

51

2. "Big" Grover a
quantum walks, et
Main design strate
find attack compo
be viewed as collis

Some state-of-the
built this way, ass
costs magically di:
quantum collisions

aquantum claw-finc

quantum sieving (
approach) for latti
quantum combina
for lattice systems

sted

uters.
| tO
1S.

V1oUus

50

Major directions so far in
quantum cryptanalysis of PQC:

1. “Small” Grover applications.
Main design strategy:

Try to find attack components
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attacks
built this way: quantum AES
key search; quantum preimages
for SPHINCS+; quantum ISD
for Classic McEliece; quantum
XL for MQ systems; quantum
enumeration for lattice systems.

b1

2. "Big" Grover application:
quantum walks, etc.

Main design strategy: Try te
find attack components thaf
be viewed as collision search

Some state-of-the-art attack
built this way, assuming mei
costs magically disappear:

quantum collisions for SHA-
quantum claw-finding for Sl

quantum sieving (and anoth
approach) for lattice system
quantum combinatorial atta
for lattice systems.

Major directions so far in
quantum cryptanalysis of PQC:

1. “Small” Grover applications.
Main design strategy:

Try to find attack components
that can be viewed as huge
searches for “good” objects.

Some state-of-the-art attacks
built this way: quantum AES
key search; quantum preimages
for SPHINCS+; quantum ISD
for Classic McEliece; quantum
XL for MQ systems; quantum
enumeration for lattice systems.

51

52
2. "Big’ Grover applications,

quantum walks, etc.

Main design strategy: Try to
find attack components that can
be viewed as collision searches.

Some state-of-the-art attacks
built this way, assuming memory
costs magically disappear:
guantum collisions for SHA-256:
quantum claw-finding for SIKE;

quantum sieving (and another
approach) for lattice systems;
quantum combinatorial attacks
for lattice systems.

rections so far in
1 cryptanalysis of PQC:

" Grover applications.

sign strategy:

nd attack components
be viewed as huge
for “good” objects.

ate-of-the-art attacks
s way: quantum AES
ch; quantum preimages
INCS+; quantum ISD
ic McEliece; quantum
AQ systems; quantum

tion for lattice systems.

b1

2. "Big’ Grover applications,
quantum walks, etc.

Main design strategy: Try to
find attack components that can
be viewed as collision searches.

Some state-of-the-art attacks
built this way, assuming memory
costs magically disappear:
quantum collisions for SHA-256;
quantum claw-finding for SIKE;

quantum sieving (and another
approach) for lattice systems;
quantum combinatorial attacks
for lattice systems.

52

3. Kupe
and opti
example
Isogeny-
non-inte

(This su
prompte
SIKE. S
CRS/CS
security
attacks,
SIKE als
avenues
non-inte

o far in
lysis of PQC:

- applications.

gy
components
1 as huge

I objects.

-art attacks
antum AES
Im preimages
yantum ISD
e, quantum

1S; quantum

ttice systems.

51

2.

“Big" Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear:

C

C

C

uantum collisions for SHA-256;
uantum claw-finding for SIKE;
uantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

52

3. Kuperberg app
and optimizations.
example: attackin
Isogeny-based syst
non-interactive ke

(This subexponent

prompted the deve

SIKE. SIKE is sm
CRS/CSIDH for s
security levels aga
attacks, but cutof
SIKE also opens u
avenues and doesr
non-interactive ke

JC:

ONS.

1S

b1

2. "Big’ Grover applications,
quantum walks, etc.

Main design strategy: Try to
find attack components that can
be viewed as collision searches.

Some state-of-the-art attacks
built this way, assuming memory
costs magically disappear:
quantum collisions for SHA-256;
quantum claw-finding for SIKE;

quantum sieving (and another
approach) for lattice systems;
quantum combinatorial attacks
for lattice systems.

52

3. Kuperberg applications

and optimizations. Interestil
example: attacking CRS/CS
iIsogeny-based systems for sr
non-interactive key exchang

(This subexponential CRS a
prompted the development «
SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently

security levels against knowr
attacks, but cutoff is unclea
SIKE also opens up new att
avenues and doesn't provide
non-interactive key exchang

2. "Big’ Grover applications,
quantum walks, etc.

Main design strategy: Try to
find attack components that can
be viewed as collision searches.

Some state-of-the-art attacks
built this way, assuming memory
costs magically disappear:
guantum collisions for SHA-256:
quantum claw-finding for SIKE;

quantum sieving (and another
approach) for lattice systems;
quantum combinatorial attacks
for lattice systems.

52

3. Kuperberg applications

and optimizations. Interesting
example: attacking CRS/CSIDH,
Isogeny-based systems for small
non-interactive key exchange.

(This subexponential CRS attack
prompted the development of
SIKE. SIKE is smaller than
CRS/CSIDH for sufficiently large
security levels against known
attacks, but cutoff is unclear.
SIKE also opens up new attack
avenues and doesn't provide
non-interactive key exchange.)

53

~ Grover applications,

1 walks, etc.

sign strategy: Try to

ck components that can
d as collision searches.

ate-of-the-art attacks

S way, assuming memory
agically disappear:

1 collisions for SHA-256:
1 claw-finding for SIKE;
1 sieving (and another

1) for lattice systems;

) combinatorial attacks
e systems.

52

3. Kuperberg applications

and optimizations. Interesting
example: attacking CRS/CSIDH,
iIsogeny-based systems for small
non-interactive key exchange.

(This subexponential CRS attack
prompted the development of
SIKE. SIKE is smaller than
CRS/CSIDH for sufficiently large
security levels against known
attacks, but cutoff is unclear.
SIKE also opens up new attack
avenues and doesn't provide
non-interactive key exchange.)

53

4. Shor
Interesti
logarithr
number
further t
polynom
usual “c
of Gentr
homomc
ideal lat
lattice-b

Latest d
see recel
against

pplications,
C.
gy: Try to

nents that can
1on searches.

-art attacks
ming memory
sappear:

, for SHA-256;
ling for SIKE;
and another
ce systems;
torial attacks

52

3. Kuperberg applications

and optimizations. Interesting
example: attacking CRS/CSIDH,
Isogeny-based systems for small
non-interactive key exchange.

(This subexponential CRS attack
prompted the development of
SIKE. SIKE is smaller than
CRS/CSIDH for sufficiently large
security levels against known
attacks, but cutoff is unclear.
SIKE also opens up new attack
avenues and doesn't provide
non-interactive key exchange.)

53

4. Shor applicatio

Interesting
logarithms
number fie
further tec
polynomia

exampl
In grou
ds, con

usual “cyc

nniques
-time a
otomic

of Gentry STOC Z

homomorp

hic enct

ideal lattices’ and

lattice-based crypt

| atest developmer

see recent talk on
against ldeal-SVP.

. Can
€S.

S
nory

52

3. Kuperberg applications

and optimizations. Interesting
example: attacking CRS/CSIDH,
iIsogeny-based systems for small
non-interactive key exchange.

(This subexponential CRS attack
prompted the development of
SIKE. SIKE is smaller than
CRS/CSIDH for sufficiently large
security levels against known
attacks, but cutoff is unclear.
SIKE also opens up new attack
avenues and doesn't provide
non-interactive key exchange.)

53

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discret:
in groups related
ds, combined wit

usual “cyc

nniques, led to a
-time attack brea
otomic h™ = 1"

of Gentry STOC 2009 “Full

homomorp

hic encryption usi

ideal lattices’ and some new

lattice-based cryptosystems.

| atest developments:

see recent

talk on S-unit ati

against ldeal-SVP.

3. Kuperberg applications

and optimizations. Interesting
example: attacking CRS/CSIDH,
Isogeny-based systems for small
non-interactive key exchange.

(This subexponential CRS attack
prompted the development of
SIKE. SIKE is smaller than
CRS/CSIDH for sufficiently large
security levels against known
attacks, but cutoff is unclear.
SIKE also opens up new attack
avenues and doesn't provide
non-interactive key exchange.)

53

54

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discrete
in groups related to
ds, combined with

usual “cyc

nniques, led to a
-time attack breaking
otomic h™ = 1" case

of Gentry STOC 2009 “Fully

homomorp

hic encryption using

ideal lattices’ and some newer

lattice-based cryptosystems.

Latest developments:

see recent

talk on S-unit attacks

against ldeal-SVP.

rberg applications
mizations. Interesting

. attacking CRS/CSIDH,
based systems for small
ractive key exchange.

bexponential CRS attack
d the development of
IKE 1s smaller than

IDH for sufficiently large
levels against known

but cutoff is unclear.

0 opens up new attack
and doesn’t provide
ractive key exchange.)

53

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discrete
in groups related to
ds, combined with

nniques, led to a
-time attack breaking

usual “cyc

otomic h™ = 1" case

of Gentry STOC 2009 “Fully

homomorp

hic encryption using

ideal lattices’ and some newer

lattice-based cryptosystems.

L atest developments:

see recent talk on S-unit attacks

against ldeal-SVP.

54

5. New
attacks.
“"Quantt
of avera
via filter

ications

~ Interesting

g CRS/CSIDH,
ems for small
y exchange.

ial CRS attack
2lopment of
aller than
ufficiently large
inst known

- is unclear.

p new attack
1't provide

y exchange.)

53

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discrete
in groups related to
ds, combined with

usual “cyc

nniques, led to a
-time attack breaking
otomic h™ = 1" case

of Gentry STOC 2009 “Fully

homomorp

hic encryption using

ideal lattices’ and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against ldeal-SVP.

54

5. New ideas for c
attacks. Recent e
“Quantum algoritl
of average-case la
via filtering” .

18
IDH,

nall

(v

ttack
Hf

large

ack

(v o
N—

53

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discrete
in groups related to
ds, combined with

usual “cyc

nniques, led to a
-time attack breaking
otomic h™ = 1" case

of Gentry STOC 2009 “Fully

homomorp

hic encryption using

ideal lattices’ and some newer

lattice-based cryptosystems.

| atest developments:

see recent talk on S-unit attacks
against ldeal-SVP.

54

5. New ideas for quantum
attacks. Recent example:
“Quantum algorithms for va
of average-case lattice probl
via filtering” .

4. Shor applications.

Interesting
logarithms
number fie
further tec
polynomia

example: discrete
in groups related to
ds, combined with

usual “cyc

nniques, led to a
-time attack breaking
otomic h™ = 1" case

of Gentry STOC 2009 “Fully

homomorp

hic encryption using

ideal lattices’ and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against ldeal-SVP.

54

5. New ideas for quantum
attacks. Recent example:
“Quantum algorithms for variants
of average-case lattice problems
via filtering” .

55

4. Shor applications.
Interesting example: discrete
logarithms in groups related to
number fields, combined with

further techniques, led to a
polynomial-time attack breaking

usual “cyclotomic h™ = 1" case
of Gentry STOC 2009 “Fully
homomorphic encryption using
ideal lattices” and some newer
lattice-based cryptosystems.

Latest developments:
see recent talk on S-unit attacks
against ldeal-SVP.

54

55
5. New ideas for quantum

attacks. Recent example:
“Quantum algorithms for variants
of average-case lattice problems
via filtering” .

6. Analyzing and optimizing
costs of all of these algorithms

IN much more detail.

4. Shor applications.
Interesting example: discrete
logarithms in groups related to
number fields, combined with

further techniques, led to a
polynomial-time attack breaking

usual “cyclotomic h™ = 1" case
of Gentry STOC 2009 “Fully
homomorphic encryption using
ideal lattices” and some newer
lattice-based cryptosystems.

Latest developments:
see recent talk on S-unit attacks
against ldeal-SVP.

54

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering” .

6. Analyzing and optimizing

costs of all of these algorithms

IN much more detail.

7. C
enab
your

nanging cryptosystems to

e attacks: e.g. "Please use
secret key on a quantum

computer to decrypt the following

superposition of ciphertexts.”

55

