
1

Quantum cryptanalysis

Daniel J. Bernstein

Main question in

quantum cryptanalysis:

What is the most efficient

quantum algorithm

to attack this cryptosystem?

(For comparison, main question

in non-quantum cryptanalysis:

What is the most efficient

non-quantum algorithm

to attack this cryptosystem?)

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

1

Quantum cryptanalysis

Daniel J. Bernstein

Main question in

quantum cryptanalysis:

What is the most efficient

quantum algorithm

to attack this cryptosystem?

(For comparison, main question

in non-quantum cryptanalysis:

What is the most efficient

non-quantum algorithm

to attack this cryptosystem?)

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

1

Quantum cryptanalysis

Daniel J. Bernstein

Main question in

quantum cryptanalysis:

What is the most efficient

quantum algorithm

to attack this cryptosystem?

(For comparison, main question

in non-quantum cryptanalysis:

What is the most efficient

non-quantum algorithm

to attack this cryptosystem?)

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

1

Quantum cryptanalysis

Daniel J. Bernstein

Main question in

quantum cryptanalysis:

What is the most efficient

quantum algorithm

to attack this cryptosystem?

(For comparison, main question

in non-quantum cryptanalysis:

What is the most efficient

non-quantum algorithm

to attack this cryptosystem?)

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

2

“Quantum algorithm”

means an algorithm that

a quantum computer can run.

i.e. a sequence of instructions,

where each instruction is

in a quantum computer’s

supported instruction set.

How do we know which

instructions a quantum

computer will support?

(Something to think about:

Do we really know the answer

for non-quantum computers?)

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

3

Quantum computer type 1 (QC1):

contains many “qubits”;

can efficiently perform

“NOT gate”, “Hadamard gate”,

“controlled NOT gate”, “T gate”.

Making these instructions work

is the main goal of quantum-

computer engineering today.

Combine these instructions

to compute “Toffoli gate”;

: : : “Simon’s algorithm”;

: : : “Shor’s algorithm”; etc.

General belief: Traditional CPU

isn’t QC1; e.g. can’t factor quickly.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

4

Quantum computer type 2 (QC2):

stores a simulated universe;

efficiently simulates the

laws of quantum physics

with as much accuracy as desired.

This is the original concept of

quantum computers introduced

by 1980 Manin (English version:

paper appendix), 1982 Feynman.

General belief: any QC1 is a QC2.

Partial proof: see, e.g.,

2011 Jordan–Lee–Preskill

“Quantum algorithms for

quantum field theories”.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

5

Quantum computer type 3 (QC3):

efficiently computes anything

that any possible physical

computer can compute efficiently.

General belief: any QC2 is a QC3.

Argument for belief:

any physical computer must

follow the laws of quantum

physics, so a QC2 can efficiently

simulate any physical computer.

General belief: any QC3 is a QC1.

Argument for belief:

look, we’re building a QC1.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

6

State of a non-quantum computer

Data (“state”) stored in 3 bits:

a list of 3 elements of {0; 1}.
e.g.: (0; 0; 0).

e.g.: (1; 1; 1).

e.g.: (0; 1; 1).

Data stored in 64 bits:

a list of 64 elements of {0; 1}.
e.g.: (1; 1; 1; 1; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 1; 0; 0; 0;

0; 1; 0; 0; 1; 0; 0; 0; 0; 0; 1;

1; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 1; 1; 1; 0; 0; 1; 0; 0; 0;

1; 1; 0; 1; 1; 0; 0; 1; 0; 0; 1):

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

7

State of a quantum computer

Data stored in 3 qubits:

a list of 8 numbers, not all zero.

e.g.: [3; 1; 4; 1; 5; 9; 2; 6].

e.g.: [−2; 7;−1; 8; 1;−8;−2; 8].

e.g.: [0; 0; 0; 0; 0; 1; 0; 0].

Data stored in 4 qubits: a list of

16 numbers, not all zero. e.g.:

[3; 1; 4; 1; 5; 9; 2; 6; 5; 3; 5; 8; 9; 7; 9; 3].

Data stored in 64 qubits:

a list of 264 numbers, not all zero.

Data stored in 1000 qubits: a list

of 21000 numbers, not all zero.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

8

Measuring a quantum computer

Can simply look at a bit.

Cannot simply look at the list

of numbers stored in n qubits.

Measuring n qubits

• produces n bits and

• “collapses” the state.

If n qubits have state

[a0; a1; : : : ; a2n−1] then

measurement produces q

with probability |aq|2=
P
r |ar |2.

“Collapse”: New state is all zeros

except 1 at position q.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

9

e.g.: Say 3 qubits have state

[1; 1; 1; 1; 1; 1; 1; 1].

Measurement produces

000 = 0 with probability 1=8;

001 = 1 with probability 1=8;

010 = 2 with probability 1=8;

011 = 3 with probability 1=8;

100 = 4 with probability 1=8;

101 = 5 with probability 1=8;

110 = 6 with probability 1=8;

111 = 7 with probability 1=8.

“Quantum RNG.”

Warning: Quantum RNGs sold

today are measurably biased.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

10

e.g.: Say 3 qubits have state

[3; 1; 4; 1; 5; 9; 2; 6].

Measurement produces

000 = 0 with probability 9=173;

001 = 1 with probability 1=173;

010 = 2 with probability 16=173;

011 = 3 with probability 1=173;

100 = 4 with probability 25=173;

101 = 5 with probability 81=173;

110 = 6 with probability 4=173;

111 = 7 with probability 36=173.

5 is most likely outcome.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

11

e.g.: Say 3 qubits have state

[0; 0; 0; 0; 0; 1; 0; 0].

Measurement produces

000 = 0 with probability 0;

001 = 1 with probability 0;

010 = 2 with probability 0;

011 = 3 with probability 0;

100 = 4 with probability 0;

101 = 5 with probability 1;

110 = 6 with probability 0;

111 = 7 with probability 0.

5 is guaranteed outcome.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

12

NOT gates

NOT0 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[1; 3; 1; 4; 9; 5; 6; 2].

NOT0 gate on 4 qubits:

[3;1;4;1;5;9;2;6;5;3;5;8;9;7;9;3] 7→
[1;3;1;4;9;5;6;2;3;5;8;5;7;9;3;9].

NOT1 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[4; 1; 3; 1; 2; 6; 5; 9].

NOT2 gate on 3 qubits:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[5; 9; 2; 6; 3; 1; 4; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

13

state measurement

[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001

[0; 0; 1; 0; 0; 0; 0; 0] 010 ll
rr

[0; 0; 0; 1; 0; 0; 0; 0] 011

[0; 0; 0; 0; 1; 0; 0; 0] 100 ll
rr

[0; 0; 0; 0; 0; 1; 0; 0] 101

[0; 0; 0; 0; 0; 0; 1; 0] 110 ll
rr

[0; 0; 0; 0; 0; 0; 0; 1] 111

Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

14

Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].

Operation after measurement:

flipping bit 0 if bit 1 is set; i.e.,

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1).

e.g. C2NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 9; 5; 6; 2].

e.g. C0NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 9; 4; 6; 5; 1; 2; 1].

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

15

Toffoli gates

Also known as CCNOT gates:

controlled-controlled-NOT gates.

e.g. C2C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 1; 5; 9; 6; 2].

Operation after measurement:

(q2; q1; q0) 7→ (q2; q1; q0 ⊕ q1q2).

e.g. C0C1NOT2:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 4; 6; 5; 9; 2; 1].

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

16

More shuffling

Combine NOT, CNOT, Toffoli

to build other permutations.

e.g. series of gates to

rotate 8 positions by distance 1:

3 1 4 1

LLLLLLLLL5 9 2 6

sssssssss

C0C1NOT2
3 1

999994 6

�����
5 9

999992 1

�����
C0NOT1

3

,,,, 6

����
4

,,,, 1

����
5

,,,, 1

����
2

,,,, 9

����
NOT0

6 3 1 4 1 5 9 2

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

17

Hadamard gates

Hadamard0:

[a; b] 7→ [a + b; a− b].

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4 2 5 3 14 −4 8 −4

Hadamard1:

[a; b; c; d] 7→
[a + c; b + d; a− c; b − d].

3

FFFFFFF 1

FFFFFFF 4

xxxxxxx 1

xxxxxxx 5

FFFFFFF 9

FFFFFFF 2

xxxxxxx 6

xxxxxxx

7 2 −1 0 7 15 3 3

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

18

Some uses of Hadamard gates

Hadamard0, NOT0, Hadamard0:

3

4444 1

4

4444 1

5

4444 9

2

4444 6

4

4444 2

5

4444 3

14

4444 −4

8

4444 −4

2

4444 4

3

4444 5

−4

4444 14

−4

4444 8

6 −2 8 −2 10 −18 4 −12

“Multiplied each amplitude by 2.”

This is not physically observable.

“Negated amplitude if q0 is set.”

No effect on measuring now.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

19

Fancier example:

“Negate amplitude if q0q1 is set.”

Assumes q2 = 0: “ancilla” qubit.

3 1 4 1

LLLLLLLLL0 0 0 0

sssssssss

C0C1NOT2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL0

LLLLLLLL0

sssssssss 0

sssssssss 0

sssssssss 1

sssssssss

Hadamard2
3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL1

LLLLLLLLL3

sssssssss 1

sssssssss 4

sssssssss −1

sssssss
NOT2

3

LLLLLLLLL1

LLLLLLLLL4

LLLLLLLLL−1

LLLLLLL3

sssssssss 1

sssssssss 4

sssssssss 1

sssssssss

Hadamard2
6 2 8 0

LLLLLLLLL0 0 0 −2

sssssss
C0C1NOT2

6 2 8 −2 0 0 0 0

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

This example is for a function f

with 3-bit input and 3-bit output.

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

This example is for a function f

with 3-bit input and 3-bit output.

20

Affects measurements: “Negate

amplitude around its average.”

[3; 1; 4; 1] 7→ [1:5; 3:5; 0:5; 3:5].

3

2222 1

����
4

2222 1

����
0

2222 0

����
0

2222 0

����
H0

4

DDDDDD 2

DDDDDD 5

zzzzzzz
3

zzzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1

9 5 −1 −1 0 0 0 0

: : :

−9

2222 5

����
−1

2222 −1

����
0

2222 0

����
0

2222 0

����
H0
−4

DDDDD−14

DDDDD−2

zzzzz
0

zzzzzz
0

DDDDDDD 0

DDDDDDD 0

zzzzzzz
0

zzzzzzz
H1
−6−14−2−14 0 0 0 0

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

This example is for a function f

with 3-bit input and 3-bit output.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

This example is for a function f

with 3-bit input and 3-bit output.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 2.0. Hadamard0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 2.1. Hadamard1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 2.2. Hadamard2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe.

Step 3 will apply the function f (a

specific function in this example),

computing f (u) in universe u.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3a. C0NOT3:

1; 0; 1; 0; 1; 0; 1; 0;

0; 1; 0; 1; 0; 1; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3b. More entry shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3c. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3d. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3e. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3f. More entry shuffling:

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3g. More entry shuffling:

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3h. More entry shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3i. More entry shuffling:

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 1; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3j. Final entry shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 3j. Final entry shuffling:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 1; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 0; 0; 0; 0; 1; 0; 0:

Each column is a parallel universe

performing its own computations.

Surprise: u and u ⊕ 101 match.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.0. Hadamard0:

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 1; 0; 0; 1; 1;

1; 1; 0; 0; 1; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 0; 0; 1; 1; 0; 0:

Notation: 1 means −1.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.1. Hadamard1:

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1;

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

1; 1; 1; 1; 1; 1; 1; 1:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

21

Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

22

Example of Simon’s algorithm

Step 4.2. Hadamard2:

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2;

2; 0; 2; 0; 0; 2; 0; 2;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

2; 0; 2; 0; 0; 2; 0; 2:

Step 5: Measure. Obtain some

information about the surprise: a

random vector orthogonal to 101.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

23

Repeat to figure out 101.

Generalize Step 3 to any function

u 7→ f (u) with f (u) = f (u ⊕ s).

“Usually” algorithm figures out s.

Shor’s algorithm replaces ⊕
with more general + operation.

Many spectacular applications.

e.g. Shor finds “random” s with

2u mod N = 2u+s mod N.

Easy to factor N using this.

e.g. Shor finds “random” s; t with

4u9v mod p = 4u+s9v+t mod p.

Easy to compute discrete logs.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2 + Step 1:

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 2× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 3× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 4× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 5× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 6× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 7× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 8× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 9× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 10× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 11× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 12× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 13× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 14× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 15× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 16× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 17× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 18× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 19× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 20× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 25× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 30× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 35× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Good moment to stop, measure.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 40× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 45× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 50× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Traditional stopping point.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 60× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 70× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 80× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 90× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

26

Normalized graph of u 7→ au
for an example with n = 12

after 100× (Step 1 + Step 2):

−1.0

−0.5

0.0

0.5

1.0

Very bad stopping point.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

27

u 7→ au is completely described

by a vector of two numbers

(with fixed multiplicities):

(1) au for roots u;

(2) au for non-roots u.

Step 1 + Step 2

act linearly on this vector.

Easily compute eigenvalues

and powers of this linear map

to understand evolution

of state of Grover’s algorithm.

⇒ Probability is ≈1

after ≈(ı=4)20:5n iterations.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

28

Many more quantum algorithms

2021: Your CPU consists of

transistors performing bit ops.

Can think of any algorithm

running on that CPU

as a sequence of bit operations.

Can simulate these bit operations

and output using NOT, CNOT,

CCNOT, and measurement

on a quantum computer.

So {non-quantum algorithms}
can be viewed as a subset of

{quantum algorithms}.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

29

This subset includes the fastest

algorithms known for many

computations. Learn how to

design non-quantum algorithms!

Assuming quantum computers:

Fastest known quantum-physics

simulators, fastest algorithms to

factor “hard” integers, etc. are

outside this subset. Learn how to

design quantum algorithms!

Often techniques for designing

non-quantum algorithms

are combined with techniques

specific to quantum algorithms.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

30

2001 Shor survey regarding 1994

Shor and 1996 Grover: “These

techniques for constructing faster

algorithms for classical problems

on quantum computers are the

only two significant ones which

have been discovered so far.”

2021: Shor’s algorithm and

Grover’s algorithm continue to

play critical roles. There are also

several useful generalizations

and further ideas adding to the

landscape of quantum speedups.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

31

Some common Grover variants

What if f has many roots?

Can try same algorithm.

Analysis and optimization

depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

32

What if there are many “good”

values of f , not just value 0?

Can modify algorithm: instead of

negating when f (q) = 0,

negate when g(f (q)) = 0.

Or simply apply original Grover to

the composition q 7→ g(f (q)).

What if one doesn’t know R?

Can modify algorithm. Or repeat

original algorithm with sequence

of guesses for R, starting with

2n and decreasing exponentially.

Approximation of R suffices.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

33

More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

34

Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.

Shor’s idea + extra work

handles arbitrary finite groups

with O(n) evaluations of f .

Massive caveat here: also need

huge f -independent computation!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

38

Kuperberg: For dihedral group,

reduce the extra computation

at some cost in f evaluations.

Total cost is superpolynomial

but subexponential: 2O(
√
n)

evaluations of f + overhead.

Shor already handles some easy

subgroups of the dihedral group.

For hard cases, Kuperberg solves

the “hidden-shift problem”:

find s in a commutative group

given two functions f0; f1
satisfying f1(u) = f0(u + s).

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

39

The impact on cryptography

2021.12: A Firefox connection

to https://google.com

is encrypted and authenticated

by AES-128-GCM,

using a key exchanged

by the X25519 ECDH system,

with the key exchange signed

by an ECDSA-NIST-P-256 key,

with the signing key certified

by an RSA-2048 key,

which in turn is certified

by an RSA-4096 key,

which is trusted by Firefox.

SHA-256, SHA-384 also appear.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

40

Shor’s algorithm breaks RSA and

ECC in polynomial time. Panic!

“But nobody has a big enough

quantum computer yet!”

— Will large-scale attackers

tell us that they’ve built

a big enough quantum computer?

Also, leaks show that they’re

already recording ciphertexts

that they’ll try to decrypt later.

Also, upgrading everything

to post-quantum cryptography

won’t happen instantaneously.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

41

“Is the polynomial small enough

to be a real threat?”

— 2019 Gidney–Eker̊a

“How to factor 2048 bit RSA

integers in 8 hours using 20

million noisy qubits” combines

an improved version of Shor’s

algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

42

Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

43

Some reasons 240 can improve:

• Lower-cost qubits.

• Less noise in qubits.

• Better qubit connectivity.

• Better error-correction methods.

• Better reversibility conversions.

Beyond modular exponentiation:

each algorithm needs analysis of

quantum/non-quantum cost ratio.

CCNOT costs >100× CNOT;

reversibility conversions interact

with high-level algorithm details;

error-correction cost depends on

size of computation; and so on.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

44

Further impact: Grover

Typical symmetric-crypto attack:

Guess the secret AES-128 key,

see if guess decrypts ciphertext

to <HTML><HEAD><met...

If not, try further guesses.

Non-quantum attack succeeds

in 2127 guesses on average,

which sounds too expensive

for most people to worry about.

(Bitcoin: ≈292 hashes/year.)

Grover takes only 264 quantum

evaluations of AES. Panic!

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

45

Quantum AES evaluation:

≈215 qubit operations.

Similar cost to 255 bit operations.

Attack costs ≈2119 bit operations.

Also, Grover speedup

comes from serial iterations.

264 nanoseconds = 585 years,

and 1ns iterations won’t be easy.

To run 210× faster,

need 220 quantum computers:

≈2129 bit operations.

To run 220× faster,

need 240 quantum computers:

≈2139 bit operations.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

46

Can still be lower cost

than non-quantum AES attack

under reasonable assumptions

re quantum-computer progress,

but much more expensive

than Shor RSA-2048 attack.

Many commentators conclude

that AES-128 is safe.

However, AES-128 exposes many

protocols to multi-target attacks

that are already feasible today.

So use AES-256. (Or ChaCha20:

bigger security margin, no timing

attacks, no block-size attacks.)

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

47

Every Grover application

runs into the same questions.

How many years is the user

willing to wait for results?

How many serial iterations

can be carried out in that time

for the target function f ?

Does this outweigh ratio between

qubit-op cost and bit-op cost?

For cryptographic risk

management, should presume

some Grover speedup depending

on quantum-computer progress,

but have to account for costs of

quantum evaluation of f .

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

48

For many applications of Grover

(and quantum-walk algorithms),

claims of quantum speedups

in the literature rely critically on

underestimating the cost of f .

Example: Non-quantum algorithm

finds SHA-256 collision in 2128

evaluations. Quantum algorithm

finds SHA-256 collision in 285

evaluations plus 285 random

accesses to 285 memory locations.

The literature does not state a

physically plausible cost model

where quantum algorithm wins.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

49

Post-quantum cryptography

What do cryptographers do

against quantum computers?

2003: Coined the term

“post-quantum cryptography”.

2006, 2008, 2010, 2011, 2013,

2014, 2016, 2017, 2018, 2019,

2020, 2021, : : : :

PQCrypto conferences.

2015: NSA issued statement.

2016: NIST announced

Post-Quantum Cryptography

Standardization Project.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

50

2017: NIST received and posted

69 complete submissions.

Almost all submissions have

faster attacks known today

even without quantum computers.

About half have been shown to

not meet their security claims.

New attack advances are

continuing to appear in 2021.

Much worse status than previous

cryptographic competitions.

Cryptanalysts are overloaded.

Presumably many attacks

haven’t been found yet.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

51

Major directions so far in

quantum cryptanalysis of PQC:

1. “Small” Grover applications.

Main design strategy:

Try to find attack components

that can be viewed as huge

searches for “good” objects.

Some state-of-the-art attacks

built this way: quantum AES

key search; quantum preimages

for SPHINCS+; quantum ISD

for Classic McEliece; quantum

XL for MQ systems; quantum

enumeration for lattice systems.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

52

2. “Big” Grover applications,

quantum walks, etc.

Main design strategy: Try to

find attack components that can

be viewed as collision searches.

Some state-of-the-art attacks

built this way, assuming memory

costs magically disappear :

quantum collisions for SHA-256;

quantum claw-finding for SIKE;

quantum sieving (and another

approach) for lattice systems;

quantum combinatorial attacks

for lattice systems.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

53

3. Kuperberg applications

and optimizations. Interesting

example: attacking CRS/CSIDH,

isogeny-based systems for small

non-interactive key exchange.

(This subexponential CRS attack

prompted the development of

SIKE. SIKE is smaller than

CRS/CSIDH for sufficiently large

security levels against known

attacks, but cutoff is unclear.

SIKE also opens up new attack

avenues and doesn’t provide

non-interactive key exchange.)

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

6. Analyzing and optimizing

costs of all of these algorithms

in much more detail.

54

4. Shor applications.

Interesting example: discrete

logarithms in groups related to

number fields, combined with

further techniques, led to a

polynomial-time attack breaking

usual “cyclotomic h+ = 1” case

of Gentry STOC 2009 “Fully

homomorphic encryption using

ideal lattices” and some newer

lattice-based cryptosystems.

Latest developments:

see recent talk on S-unit attacks

against Ideal-SVP.

55

5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

6. Analyzing and optimizing

costs of all of these algorithms

in much more detail.

7. Changing cryptosystems to

enable attacks: e.g. “Please use

your secret key on a quantum

computer to decrypt the following

superposition of ciphertexts.”

