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[1; 0; 0; 0; 0; 0; 0; 0] 000 ll
rr

[0; 1; 0; 0; 0; 0; 0; 0] 001
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rr
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Operation on quantum state:

NOT0, swapping pairs.

Operation after measurement:

flipping bit 0 of result.

Flip: output is not input.
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Controlled-NOT (CNOT) gates

e.g. C1NOT0:

[3; 1; 4; 1; 5; 9; 2; 6] 7→
[3; 1; 1; 4; 5; 9; 6; 2].
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Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.
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• Nonzero s ∈ {0; 1}n.
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Simon’s algorithm

Assumptions:

• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.
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• f (u) = f (u ⊕ s) for all u.

• f has no other collisions.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .
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compute f for many inputs,
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≈n quantum evaluations of f .
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Example of Simon’s algorithm

Step 1. Set up pure zero state:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

This example is for a function f

with 3-bit input and 3-bit output.
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Example of Simon’s algorithm

Step 2.0. Hadamard0:

1; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:
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Example of Simon’s algorithm

Step 2.1. Hadamard1:

1; 1; 1; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:
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compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .
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Example of Simon’s algorithm

Step 2.2. Hadamard2:

1; 1; 1; 1; 1; 1; 1; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe.

Step 3 will apply the function f (a

specific function in this example),

computing f (u) in universe u.
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Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .
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Example of Simon’s algorithm

Step 3a. C0NOT3:

1; 0; 1; 0; 1; 0; 1; 0;

0; 1; 0; 1; 0; 1; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Example of Simon’s algorithm

Step 3b. More entry shuffling:

1; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Non-quantum algorithm to find s:
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Simon’s algorithm finds s with

≈n quantum evaluations of f .
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Example of Simon’s algorithm

Step 3c. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.
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• Given any u ∈ {0; 1}n,

can efficiently compute f (u).

• Nonzero s ∈ {0; 1}n.

• f (u) = f (u ⊕ s) for all u.
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Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find collision.

Simon’s algorithm finds s with

≈n quantum evaluations of f .
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Example of Simon’s algorithm

Step 3d. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 1; 0;

0; 0; 0; 1; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Example of Simon’s algorithm

Step 3e. More entry shuffling:

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0:

Each column is a parallel universe

performing its own computations.
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Example of Simon’s algorithm

Step 3f. More entry shuffling:

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0:

Each column is a parallel universe

performing its own computations.
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Example of Simon’s algorithm

Step 3g. More entry shuffling:

0; 1; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 1; 0; 0; 0;

0; 0; 0; 0; 0; 1; 0; 0;

1; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 0; 1; 0; 0; 1; 0;

0; 0; 0; 0; 0; 0; 0; 0;

0; 0; 1; 0; 0; 0; 0; 1:

Each column is a parallel universe

performing its own computations.
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Each column is a parallel universe

performing its own computations.
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24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.
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Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.
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bu = au otherwise.
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hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.
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bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.



24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
has f (s) = 0.

Goal: Figure out s.

Non-quantum algorithm to find s:

compute f for many inputs,

hope to find output 0.

Success probability is very low

until #tries approaches 2n.

Grover’s algorithm takes only 2n=2

quantum evaluations of f .

e.g. 264 instead of 2128.

25

Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 0 steps:

−1.0

−0.5

0.0

0.5

1.0



24

Grover’s algorithm

Assume: unique s ∈ {0; 1}n
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Non-quantum algorithm to find s:

compute f for many inputs,
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until #tries approaches 2n.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2:
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after Step 1 + Step 2 + Step 1:
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 2× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 3× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 4× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 5× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 6× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 7× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 8× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 9× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 10× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 11× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 12× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 13× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 14× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 15× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 16× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 17× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 18× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 19× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 20× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.
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Normalized graph of u 7→ au
for an example with n = 12

after 25× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 30× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 35× (Step 1 + Step 2):
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1.0

Good moment to stop, measure.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 40× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 45× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 50× (Step 1 + Step 2):
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0.5

1.0

Traditional stopping point.
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 60× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 70× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 80× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12

after 90× (Step 1 + Step 2):
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Start from uniform superposition

over n-bit strings u: each au = 1.

Step 1: Set a← b where

bu = −au if f (u) = 0,

bu = au otherwise.

This is fast if f is fast.

Step 2: “Grover diffusion”.

Negate a around its average.

This is also fast.

Repeat Step 1 + Step 2

about 0:58 · 20:5n times.

Measure the n qubits.

With high probability this finds s.

26

Normalized graph of u 7→ au
for an example with n = 12
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depend on R = #{roots of f }.

Non-quantum search: ≈2n=R

evaluations of f .

Quantum search: ≈(2n=R)1=2

quantum evaluations of f .

Alternative approach, instead of

redoing analysis and optimization:

restrict f to a (pseudo)random

input set; use unique-root Grover.
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More interesting generalization:

quantum walks. Seems more

powerful than original Grover.

Say u 7→ f (u) isn’t very fast

but have a very fast algorithm

u; u′; f (u) 7→ f (u′) for u′ in a

specified set of “neighbors” of u.

Want to find “good” f (u).

Non-quantum random walk:

Start with one u; compute f (u).

Replace u by random neighbor;

repeat enough times for mixing;

check if good; keep repeating.

Quantum walk: (repetitions)1=2.
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Extreme example of walk:

Completely unrestricted neighbors.

Recompute f at each step.

Mixes instantly. Same as Grover.
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Recompute f at each step.

Mixes instantly. Same as Grover.

More interesting example:

Ambainis distinctness algorithm.

Say f has 2n inputs,

exactly one collision {p; q}.
“Collision”: p 6= q; f (p) = f (q).

Problem: find this collision.

Generic non-quantum algorithm:

nearly 2n calls to f .

Ambainis, using quantum walk:

≈22n=3 calls to f .
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35

Sketch of Ambainis details:

For S ⊆ {inputs} with #S = ff,

define ’(S) = (fi; T ) where

fi = #{f (i) : i ∈ S} and

T is the multiset of f (i) for i ∈ S.

Define “good” to mean fi < ff.

Chance of good: (ff=2n)2.

To walk from S to neighbor S′:
delete one elt, insert one elt.

Non-quantum setup cost ff;

then inner ·outer loops ff · (2n=ff)2.

Quantum: ff; then ff1=2 · (2n=ff).

Take ff to minimize ff + 2n=ff1=2.
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36

Some common Shor variants

Simon used addition in (Z=2)n.

Shor used addition in Z or Z2

for factorization or discrete logs.

Can use addition in Zn.

“Continuous” version: Rn,

with careful precision handling.

In all of these algorithms,

naturally find “random” s

satisfying f (u) = f (u + s).

Watch out for hypotheses on f

and exact meaning of “random”.
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37

What if the function f is

defined on a more general group,

not necessarily commutative?

Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,

the “hidden-subgroup problem”

(HSP) is to find this group.
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Terminology: {periods of f } is

also called the “stabilizer group”

of f under the natural group

action. In quantum algorithms,
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algorithm with “plausible physical

assumptions for large-scale

superconducting qubit platforms”.

Most of the cost is for error

correction, using many imperfect

qubits to simulate the perfect

qubits inside Shor’s algorithm.
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Same paper says 7 hours with 26

million qubits for a big discrete

log in F∗p if p is a 2048-bit prime

and (p − 1)=2 is also prime.

(Other papers: lower costs for

256-bit elliptic-curve discrete log.)

Useful comparison: non-quantum

modular exponentiation on an

Intel CPU core is >220× faster.

Reasonable estimates: quantum

computer will cost 220× more;

overall cost of qubit operation

will be 240× cost of bit operation.
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5. New ideas for quantum

attacks. Recent example:

“Quantum algorithms for variants

of average-case lattice problems

via filtering”.

6. Analyzing and optimizing

costs of all of these algorithms

in much more detail.

7. Changing cryptosystems to

enable attacks: e.g. “Please use

your secret key on a quantum

computer to decrypt the following

superposition of ciphertexts.”


